2023年8月3日发(作者:)
4,对以下数据分别作二次,三次多项式拟合,并画出图形.
x=1:16;
y=[4, 6.4, 8, 8.4, 9.28, 9.5, 9.7, 9.86, 10, 10.2, 10.32, 10.42, 10.5, 10.55,
10.58, 10.6];
答案: (填写程序语句)
二次多项式拟合
x=1:1:16;
y=[4, 6.4, 8, 8.4, 9.28, 9.5, 9.7, 9.86, 10, 10.2, 10.32, 10.42, 10.5, 10.55,
10.58, 10.6];
a=polyfit(x,y,2)
a =
-0.0445 1.0711 4.3252
ezplot('-0.0445*x^2+1.0711*x+4.3252')
三次多项式拟合
x=1:1:16;
y=[4, 6.4, 8, 8.4, 9.28, 9.5, 9.7, 9.86, 10, 10.2, 10.32, 10.42, 10.5, 10.55,
10.58, 10.6];
a=polyfit(x,y,3)
a =
0.0060 -0.1963 2.1346 2.5952
ezplot('0.0060*x^3-0.1963*x^2+2.1346*x+2.5952')
1,求下面的优化问题:
min -5x1+4x2+2x3
6x1-x2+x3<=8
x1+2x2+4x3<=10
3>=x1>=-1;
2>=x2>=0;
x3>=0;
用lingo求解。
7.2.4 解方程
1、代数方程
格式:solve (f,t)
功能:对变量t 解方程f=0,t 缺省时默认为x 或最接近字母x 的符号变量。
例如:求解一元二次方程f=a*x^2+b*x+c的实根,
>> syms a b c x
>> f=a*x^2+b*x+c;
>> solve (f,x)
ans=
[1/2/a*(-b+(b^2-4*a*c)^ (1/2))]
[1/2/a*(-b-(b^2-4*a*c)^ (1/2))]
2、微分方程
格式:dsolve(‘s’, ’s1’, ’s2’,…, ’x’)
1 其中s为方程;s1,s2,……为初始条件,缺省时给出含任意常数c1,c2,……的通解;x为自变量,缺省时默认为t 。
例如:求微分方程y1y2的通解
>> dsolve(‘Dy=1+y^2’)
ans=
tan(t+c1)
1,方程
sin(x)0.3ex0的根.
答案:1.076 (填写程序语句)
可分别用matlab的指令sovle求解,或用lingo求解。
2
发布者:admin,转转请注明出处:http://www.yc00.com/xiaochengxu/1691040196a492924.html
评论列表(0条)