2024年2月13日发(作者:)
近世代数中英对照学习
一、字母表
atom:原子
automorphism:自同构
binary operation:二元运算
Boolean algebra:布尔代数
bounded lattice:有界格
center of a group:群的中心
closure:封闭
commutative(Abelian) group:可交换群,阿贝尔群
commutative(Abelian) semigroup:可交换半群
comparable:可比的
complement:补
concatenation:拼接
congruence relation:同余关系
cycle:周期
cyclic group:循环群
cyclic semigroup:循环半群
determinant:行列式
disjoint:不相交
distributive lattice:分配格
entry:元素
epimorphism:满同态
factor group:商群
free semigroup:自由半群
greatest element:最大元
greatest lower bound:最大下界,下确界
group:群
homomorphism:同态
idempotent element:等幂元
identity:单位元,么元
identity:单位元,么元
inverse:逆元
isomorphism:同构
join:并
kernel:同态核
lattice:格
least element:最小元
least upper bound:最小上界,上确界
left coset:左陪集
lower bound:下界
lower semilattice:下半格
main diagonal:主对角线
maximal element:极大元
meet:交
minimal element:极小元
minimal generating set:最小生成集
monomorphism:单同态
normal subgroup:正规子群,不变子群
octic group(group of symmetries of the square):八阶群,平方对称群
orbit:轨道
order:群的阶,元素的阶
partially ordered set (poset):偏序集
partition:分割
quotient semigroup:商半群
retract:收缩
retraction map:收缩映射
semigroup with identity, monoid:含么半群,独异点
semigroup:半群
semilattice:子半格
string, word:字符串,单词
subgroup:子群
sublattice:子格
subsemigroup:子半群
symmetric group:对称群
total ordering, chain, linear ordering:全序,链,线序
upper bound:上界
upper semilattice:上半格
二、本章内容及教学要点:
8.1 Partially Ordered Sets Revisited
教学内容:poset,(least)upper bound,greatest element,(greatest)lower bound,least element,maximal(minimal)
element,upper(lower) semilattice
8.2 Semigroups and Semilattices
教学内容: semigroup,Abelian semigroup,monoid,subsemigroup,free semigroup,minimal generating set,congruence relation,quotient semigroup,semilattice,idempotent element
8.3 Lattices
教学内容:lattice,sublattice,bounded lattice,distributive lattice,Boolean algebra,complement,atom
8.4 Groups
教学内容:group,identity,inverse,commutative(Abelian) group,order,subgroup,cyclic group,left coset
8.5 Groups and Homomorphisms
教学内容:monomorphism,epimorphism,isomorphism,normal
subgroup,octic group(group of symmetries of the square)
定理证明及例题解答
三、前言
代数的概念与方法是研究计算机科学和工程的重要数学工具. 众所周知,在许多实际问题的研究中都离不开数学模型,而构造数学模型就要用到某种数学结构,而近世代数研究的中心问题是代数系统的结构:半群、群、格与布尔代数等等. 近世代数的基本概念、方法和结果已成为计算机科学与工程领域中研究人员的基本工具. 在研究形式语言与自动机理论、编码理论、关系数据库理论、抽象数据类型理论中,在描述机器可计算的函数、研究计算复杂性、刻画抽象数据结构、研究程序设计学中的语义学、设计逻辑电路中有着十分广泛的应用.
为什么要研究代数系统?代数是专门研究离散对象的数学,是对符号的操作.
它是现代数学的三大支柱之一(另两个为分析与几何). 代数从19世纪以来有惊人的发展,带动了整个数学的现代化. 随着信息时代的到来,计算机、信息都是数字(离散化)的,甚至电视机.摄像机、照相机都在数字化. 知识经济有人也称为数字经济. 这一切的背后的科学基础,就是数学,尤其是专门研究离散对象的代数. 代数发端于“用符号代替数”,后来发展到以符号代替各种事物.
在一个非空集合上,确定了某些运算以及这些运算满足的规律,于是该非空集合中的元素就说是有了一种代数结构. 现实世界中可以有许多具体的不相同的代数系统. 但事实上,不同的代数系统可以有一些共同的性质. 正因为此,我们要研究抽象的代数系统,并假设它具有某一类具体代数系统共同拥有的性质.
任何在这个抽象系统中成立的结论,均可适用于那一类代数系统中的任何一个.
代数学历史悠久. 代数的发展可分成两个阶段. 19世纪这前的代数称为古典代数,19世纪至今的代数称为近世代数(抽象代数).
远在古希腊时期,人们就知道可以用符号代表所解问题中的未知数,并且这些符号可以像数一样进行运算,直到获得问题的解. 古典代数的基本研究对象是方程,它是以讨论方程的解法为中心. 在古典代数中,每一个符号代表的总是一个数,但这个数可以是整数也可以是实数. 古典代数的主要目标是用代数运算解一元多次方程. 它成功地解决了一元二次、一元三次和一元四次方程的求解问题.
19世纪初,人们逐渐认识到,符号不仅可以代表数,而且可以代表任何事物. 在这种思想认识的支配下,人们开始将任意集合上所进行的代数运算作为研究的对象,从而出现了近世代数体系和方法.
19世纪30年代,在寻找一元五次方程根式求解方法的过程中,年青的法国数学家伽罗瓦(E. Galois)首次得出了群的概念—用置换群的方法彻底证明了高于四次的代数方程的根式不可解性. 起初他的奇思妙想和巧妙方法虽然并不被当时人接受和理解,却发展出了一门新的学科—抽象代数学.
抽象代数学的研究对象是抽象的,它不是以某一具体事物为研究对象,而是以一大类具有共同性质的事物为研究对象. 因此其研究成果适用于这一类事物中的每一个,从而收到事半功倍之效.
抽象代数学的主要内容是研究各种各样的代数系统. 它把一些形式上很不相同的代数系统,用统一的方法描述、研究和推理,从而得到反映出它们共性的一些本质的结论,然后再把这些结论应用到具体的代数系统中. 从而抽象产生了广泛的应用.
抽象代数学在计算机中有着十分重要的应用. 100多年来,随着科学的发展,抽象代数越来越显示出它在数学的各个分支、物理学、化学、力学、生物学等科学领域的重要作用. 抽象代数的概念和方法也是研究计算科学的重要数学工具. 有经验和成熟的计算科学家都知道,除了数理逻辑外,对计算科学最有用的数学分支学就是代数,特别是抽象代数. 抽象代数是关于运算的学问,是关于计算规则的学问.
在许多实际问题的研究中都离不开数学模型,而构造数学模型就要用到某种数学结构,而抽象代数研究的中心问题就是一种很重要的数学结构—代数系统:半群、群、格与布尔代数等等. 计算科学的研究也离不开抽象代数的应用:半群理论在自动机理论和形式语言中发挥了重要作用;有限域理论是编码理论的数学基础,在通讯中起过重要的作用;至于格和布尔代数则更不用说了,是电子线路设计、电子计算机硬件设计和通讯系统设计的重要工具. 另外描述机器可计算的函数、研究算术计算的复杂性、刻画抽象数据结构、描述作为程序设计基础的形式语义学,都需要抽象代数知识.
这一章我们将介绍近世代数中最基本的代数系统:群和半群,它们在计算学
科中有十分广泛的应用:半群在形式语言和自动机理论中有着重要的应用,群则可应用于编码理论之中.
四、中英对照
8.1 Partially Ordered Sets Revisited
定义8.1.1 A relation R on A is a partial ordering(偏序) if it is
reflexive, antisymmetric, and transitive. If the relation R on A is
a partial ordering, then (A,R) is a partially ordered set or
poset (偏序集)with ordering R.
由于集合中的偏序关系是Z,R上的“≤”、“≥”的推广,故常用“≤”表示一般的偏序关系,偏序集用(A, ≤)表示. Note that the symbol ≤ is
being used to denote the distinct partial orders.
定义8.1.2 Two elements a and b of the partially ordered set (S,
≤) are comparable if either a≤b or b≤a. If every two elements of
a poset (S, ≤) are comparable,then ≤ is a total ordering.
在一个偏序集中,往往有一些特殊元素需要加以注意和研究:
定义8.1.3 Let (A, ≤) be a poset and B a nonempty subset of A.
An element a in A is called an upper bound of B(B的上界) if b≤a
for all b in B. The element a is called a least upper bound(B的上确界) of B if (1) a is an upper bound of B and (2) any other
upper bound a1 of B, if exists, then a≤ element a in B is
called a greatest element(B的最大元) of B if x≤a for all x in B.
An element a in A is called a lower bound of B(B的下界) if
a≤b for all b in B. The element a is called a greatest lower
bound(B的下确界) of B if (1) a is a lower bound of B and (2) any
other lower bound a1 of B, if exists, then a1≤a. An element a in B
is called a least element(B的最小元) of B if a≤x for all x in B.
定义8.1.4 Let (A, ≤) be a poset and B a nonempty subset of A.
An element a in B is called a maximal element of B(B的极大元)
if for every element b of B, a≤b implies a=b. An element a in B
is called a minimal element of B(B的极小元) if for every
element b of B, b≤a implies a=b.
例8.1.1 Let A be the poset of nonnegative real numbers with
the usual partial order ≤. Then 0 is a minimal element of A.
There are no maximal element of A. The poset Z with the usual
partial order ≤ has no minimal elements and no maximal
elements.
例8.1.2 Let A={a,b,c}. Then in the poset (P(A),), the empty
set
is a least element of A, and the set A is a greatest element
of A.
例8.1.3 设 A=P({a,b,c}),偏序关系为集合的包含关系“”,B={{b,c},{a,c}},则B的上界为{a,b,c},下界为{c},Ф;最大(小)元不存在,极大(小)元都是{b,c},{a,c}.
例8.1.4 设A={2,3,4,6,7,8,12},A上的偏序关系为|(整除关系);B={8,12},C={2,4,12},则
B无上界,下界为2,4;最大(小)元无,极大(小)元8,12;
C的上界12,下界为2;最大元为12,最小元为2,极大元12,极小元为2.
定理8.1.1 Let A be a finite nonempty poset with partial order ≤.
Then A has at least one maximal element and at least one
minimal element.
定理8.1.2 A poset has at most one greatest element and at
most one least element.
定理8.1.3 Let (A, ≤) be a poset. Then a nonempty subset B of
A has at most one lub and at most glb.(设(A, ≤)为偏序集,≠BA. 若B有上(下)确界,则它们是惟一的)
证明 定理8.1.3
定义8.1.5 A poset A for which all two-element subsets have a
least upper bound in A is called an upper semilattice(上半格).
In an upper semilattice A, we can define a binary operation
∨(+) as a∨b=lub{a,b}. Then (A, ∨) is an algebraic structure.
定义8.1.6 A poset A for which all two-element subsets have a
greatest lower bound in A is called an lower semilattice(下半格).
In a lower semilattice A, we can define a binary operation
∧(〃) as a∧b=glb{a,b}. Then (A, ∧) is an algebraic structure.
定理8.1.4
(a) Let A be an upper semilattice. Then for all a,b,c∈A,
a∨(b∨c)=(a∨b)∨c, a∨a=a and a∨b=b∨a.
(b) Let A be a lower semilattice. Then for all a,b,c∈A,
a∧(b∧c)=(a∧b)∧c, a∧a=a and a∧b=b∧a.
ASSIGNMENTS:
PP209-210:6,8,9,10,11,12,30,32
8.2
Semigroups and Semilattices
定义8.2.1 A binary operation(二元运算) on the set S is a
function f: S×S→S.
A binary operation exhibits the property of closure wherein
the result of the operation on two members a and b of S is also a
member of S.
定义8.2.2 A set S with a binary operation﹡on S such that for all
a,b and c in S, (a﹡b)﹡c=a﹡(b﹡c) is called a semigroup(半群)
and is denoted by (S,﹡) of simply S if the operation is
understood.
设(S,﹡)是一个代数结构. 若﹡是一个可结合的二元运算,即:a,b,c∈S,(a﹡b)﹡c=a﹡(b﹡c),则称(S,﹡)为半群.
定义8.2.3 Let (S,﹡) be a semigroup. If a﹡b=b﹡a for all a,b in
S, then (S,﹡) is called a(commutative) Abelian
semigroup(可交换半群,阿贝尔半群) . If there is an element 1 in
(S,﹡) such that 1﹡a=a﹡1=a for all a in S, then 1 is called the
identity(单位元,么元) of (S,﹡) and (S,﹡) is called a semigroup
with identity or a monoid(含么半群,独异点).
例8.2.1 (Z,+),(Z,×)都是半群;(Z,-)不是半群;设A为任一集合,则(P(A),∪),(P(A),∩)都是半群. (Z,+),(Z,×),(P(A),∪),(P(A),∩)都是可交换半群. (Z,+),(Z,×)都是含么半群,么元分别是0和1.
(P(A),∪),(P(A),∩)也都是含么半群,么元分别是和A.
定义8.2.4 Let (S,﹡) be a semigroup and T be a nonempty
subset of S. If ﹡is a binary operation on T, then T is a
subsemigroup(子半群) of S.
(T, ﹡) is a subsemigroup of (S, ﹡) if and only if T is a
nonempty subset of S and for every a, b∈T, a﹡b∈T.
例8.2.2 ({所有偶数},+)是(Z,+)的子半群.
例8.2.3 Let S be the set of all functions from a nonempty set A
to itself with the binary operation composition of functions. Then
S is a semigroup and the identity function I:A→A, defined by
I(a)=a for all a∈A, is the identity of A so that S is a monoid.
例8.2.4 设A是有限个符号组成的集合,称为字母表,A上的串就是A中有限个字母组成的有序集合,空串记为. A*表示A上的串集合,A*上的连接运算定义为α,β∈A*,αβ=αβ,则(A*,)是一个含么半群,称为由A上的自由半群(The free semigroup on the alphabet
A).
例8.2.5 Let Zn={[0],[1],[2],…,[n-1]} be the set of integers
modulo n. Then (Zn,+) and (Zn,〃) are both commutative
monoid.
定义8.2.5 Let (S,﹡) be a semigroup and a be a element of S.
Define an recursively by a1=a and an=a﹡an-1 for n>1.
Obviously, ak﹡am=ak+m for all integers k,m>0.
定义8.2.6 Let (S,﹡) be a semigroup and a be a element of S.
Let the set ={an:n>0}={a,a2,a3,…}. Then is a
subsemigroup of S. It is called the cyclic semigroup
generated by a(由a生成的循环子半群).
定理8.2.1 Let (S,﹡) be a semigroup and a1,a2,…,ak∈S. Let
A={a1,a2,…,ak} and A*=
finite products of a1,a2,…,ak. Then A* is a semigroup.
Furthermore, A* is the smallest semigroup of S containing A.
定义8.2.7 The semigroup A* is called the semigroup generated
by A. If for every proper subset B of A, B*≠A*, then A is called a
minimal generating set of A*(最小生成集).
定义8.2.8 Let (S,﹡) and (T,〃) be semigroups and f:S→T be a
function such that f(a﹡b)=f(a)〃f(b) for all a,b in S. The function
f is called a homomorphism from S to T (从S到T的同态映射).
定理8.2.2 Let (S,﹡) and (T,〃) be semigroups and f:S→T be a
homomorphism from S to T.
(a) If S1 is a subsemigroup of S, then f(S1) is a subsemigroup of
T.
(b) If T1 is a subsemigroup of T, then f-1(T1) is a subsemigroup of
S.
定义8.2.9 Let (S,﹡) be a semigroup and R be an equivalence
relation on S. If R has the property that if aRb and cRd then (a﹡c)R(b﹡d) for all a,b,c,d ∈S, Then R is called a congruence
relation(同余关系).
定理8.2.3 The equivalence classes of a congruence relation R
on a semigroup (S,﹡) form a semigroup under the binary
operation 。defined by [a] 。[b]=[a﹡b].
定义8.2.10 The semigroup formed by a congruence relation R
on a semigroup (S,﹡) is called the quotient semigroup(商半群) and is denoted by S/R.
定理8.2.4 Let (S,﹡) and (T,〃) be semigroups and f:S→T be a
homomorphism from S to T. Define the relation R on S by aRb if
f(a)=f(b). Then the relation R is a congruence relation.
证明 定理8.2.4
定义8.2.11 A commutative semigroup(S,﹡) is a
semilattice(半格) if a﹡a=a for all a∈S. An element a of a
semigroup is called an idempotent element(等幂元) if a﹡a=a.
定理8.2.5 Let (S,﹡) be a semilattice. Define the relation ≤ on
S by a≤b if a﹡b=b for a,b∈S. Then (S, ≤) is a poset and a﹡b is
the least upper bound of a and b. Hence (S,﹡) is an upper
semilattice. Similiarly (S,﹡) can be considered as a lower
semilattice by the relation ≤ on S by a≤b if a﹡b=a for a,b∈S.
证明 定理8.2.5
ASSIGNMENTS:
PP388:4,10,14,16,18
8.3 Lattices
定义8.3.1 A poset (S, ≤) that is both an upper and a lower
semilattice is a lattice(格).
In a lattice (S, ≤), we denote lub{a,b} by a∨b(called the
join(并) of a and b) and glb{a,b} by a∧b(called the meet(交) of
a and b). There are two binary operation on S. The lattice will be
denoted by (S, ∨, ∧) to emphasize the binary operations
involved.
定理8.3.1 Let (S, ∨, ∧) be a lattice. Then the following
properties are satisfied for all a,b,c∈S:
(a) Commutativity(交换律)
a∨b=b∨a a∧b=b∧a
(b) Associativity(结合律)
(a∨b)∨c=a∨(b∨c) (a∧b)∧c=a∧(b∧c)
(c) Absorption(吸收律)
a∨(a∧b)=a a∧(a∨b)=a
例8.3.1 设格(S, ∨, ∧),其中S是集合A的幂集,偏序关系≤就是集合的包含关系. 则对U,V∈S,U∨V=U∪V,U∧V=U∩V.
例8.3.2 设格(S, ∨, ∧),其中S是正整数集,偏序关系≤就是整除关系. 则对a,b∈S,a∨b=lcm(a,b),a∧b=gcd(a,b).
例8.3.3 The rational numbers, real numbers, and integers with
the usual partial ordering all form a lattices where a∨b=max(a,b),a∧b=min(a,b).
定义8.3.2 A nonempty subset T of a lattice (S, ∨, ∧) is a
sublattice(子格) of S if for all a,b∈T,a∨b and a∧b are in T.
定义8.3.3 A lattice (S, ∨, ∧) is bounded(有界的) if the set S,
considered as a poset, has a greatest element and a least
element. The greatest element is denoted by 1 and the least
element is denoted by 0.
In a bounded lattice, 0∨a=a and 1∧a=a for all a∈S.
例8.3.4 格(P(A), ∪, ∩)是一个有界格,A是最大元,空集是最小元.
定义8.3.4 Let (S, ∨, ∧) and (S1, ∨1, ∧1) be lattices. A function
f: S→S1 is a homomorphism(格同态) if for all a,b∈S,
f(a∨b)=f(a) ∨1f(b) and f(a∧b)=f(a) ∧1f(b).
If S and S1 are bounded lattices, then f: S→S1 is a
homomorphism(有界格的同态) from bounded lattice S to
bounded lattice S1 if it is a homomorphism and also f(0)=01 and
f(1)=11, where 01,11 are the greatest element and least element
of S1 respectively.
定义8.3.5 Let (S, ∨, ∧) and (S1, ∨1, ∧1) be lattices. A function
f: S→S1 is a isomorphism(格同构) if it is a homomorphism and
f is one-to-one correspondence.
例8.3.5 设A={a,b,c}, B={a,b}. 则从格(P(A), ∪, ∩) 到格(P(B), ∪,
∩)可以定义一个格同态f: P(A) →P(B), f(C)=C-{c}.
定义8.3.6 A lattice (S, ∨, ∧) is a distributive lattice(分配格) if for
all a,b,c∈S,
a∧(b∨c) =(a∧b)∨(a∧c)
a∨(b∧c) =(a∨b)∧(a∨c)
例8.3.5 哈斯图为下列图形的格不是分配格.
1
1
a a b c
b
c 0
0
在第一个格中,a∧(b∨c)= a∧1=a, (a∧b)∨(a∧c)=b∨0=b;
在第二个格中,a∧(b∨c)= a∧1=a, (a∧b)∨(a∧c)=0∨0=0.
A lattice is distributive if and only if it does not contain either
of the two lattices as sublattices.
定义8.3.7(布尔代数) A Boolean algebra(布尔代数) is a
bounded distributive lattice(有界分配格) (S, + ,〃), which has
a unary operator ′ on S such that x〃x′=0, x+x′=1 for x∈S. x′
is called the complement(补元) of x. A Boolean algebra,denoted by (S, + ,·, ′,1,0), has the following properties for all x,y,
and z ∈S:
(a) Associativity(结合律)
x〃(y〃z)=(x〃y)〃z
x+(y+z)=(x+y)+z
(b) Commutativity(交换律)
x〃y=y〃x
x+y=y+x
(c) Distributivity(分配律)
x〃(y+z)=(x〃y)+(x〃z)
x+(y〃z)=(x+y)〃(x+z)
(d) Complements(互补律)
x〃x′=0
x+x′=1
(e) Identities(同一律)
x+0=x
x〃1=x
定义8.3.8 Let B be a Boolean algebra. An element x ∈B is
called an atom(原子) of B if for all y ∈B, if y≤x, then y=0 or
y=x.
在布尔代数的哈斯图中,原子就是那些有边与0相连的元素.
定理8.3.2 Let B be a Boolean algebra. If x is an atom of B, and
y ∈B , then either x〃y=0 or x〃y=x.
定理8.3.3 Let B be a Boolean algebra. If x and y are distinct
atoms of B, then x〃y=0.
定理8.3.4 Let x1,x2,x3,…,xn be the atoms of a finite Boolean
algebra B. If x ∈B, and x〃xi=0 for all 1≤i≤n, then x=0.
证明 定理8.3.4
定理8.3.5 Let B be a finite Boolean algebra with atoms
x1,x2,x3,…,xn. Every nonzero element x of B can be written as a
sum of atoms of B. The sum is unique except for the order of the
atoms in the sum.
证明 定理8.3.5
定理8.3.6 Let B be a finite Boolean algebra with atoms
x1,x2,x3,…,xn. Let A={ x1,x2,x3,…,xn }. Then the function f, which
maps sums of atoms into the subset containing the atoms in the
sum, is an isomprphism from B to P(A).
Every finite Boolean algebra is isomorphic to the Boolean
algebra of the power set of a set.
任何一个有限布尔代数一定布尔同构于某个集合布尔代数.
有限布尔代数的阶必为2的幂.
同阶的有限布尔代数必同构.
两个布尔代数是同构的,意味着这两个布尔代数在本质上无任何差别,
只不过元素的名称和运算的标记不同而已,其它一切性质都是相同的. 一个布尔代数所具有的性质都可以照搬到与它同构的另一布尔代数上去.
ASSIGNMENTS:
PP219-221:2,4,6,8,16,18
8.4 Groups
定义8.4.1 A group(群) is a s G together with a binary
operation · on G, which has the following properties:
(1) a〃(b〃c)=(a〃b)〃c for all a,b,and c in G.
(2) There exists an element 1 in G, called the identity(单位元,么元), which has the following property that a〃1=1〃a=a for all
a in G.
(3) For each element a in G, there exists an elements a-1, called
the inverse(逆元) of a, in G such that a〃a-1=a-1〃a =1.
If a group G has the property that a〃b=b〃a for all a,b in G,
then G is called a commutative or Abelian group(交换群,阿贝尔群). A group is a finite group if G is finite.
例8.4.1 Examples of groups include the following:
1. The even integers with the binary operation addition.
2. The set of n×m matrices with real entries and the binary
operation addition.
3. The integers modulo a positive integer n, forming Zn, with the
binary operation addition.
定义8.4.2 If G is a group with n elements, then n is called the
order(阶) of the group G.
定理8.4.1 In a group,
(1) The identity is unique.
(2) The inverse of each element is unique.
(3) For each element a in G, (a-1)-1=a.
(4) For elements a and b in G, (a〃b)-1=b-1〃a-1.
Let a is an element of a group G, let a0=1 and a-k=(a-1)k.
定理8.4.2 Let G be a group and a be an element of G,
(1) an〃a-n=1 for all positive integers n.
(2) am+n=am〃an for all integers m and n.
(3) (am)n=amn for all integers m and n.
(4) (a-n)-1=an for all integers n.
定理8.4.3 If a is an element of a group G and a〃a=a, then a=1.
定理8.4.4 If G is a finite group and a is an element of G, then
as=1 for some positive integer s.
证明 定理8.4.4
定理8.4.5 Let G be a group and a be an element of G such that
as=1 for some positive integer s. If p is the least positive integer
such that ap=1, then p|s. The integer p is called the order(阶) of
a.
证明 定理8.4.5
定义8.4.3 A subset H of a group G is a subgroup(子群) of G if
H with the same operation on G is also a group.
对任一个群G而言,G和H={1}一定是G的子群,称为G的平凡子群. 非平凡子群称为G的真子群.
例8.4.2 For a positive integer m, (mZ,+) is a subgroup of
(Z,+),where mZ is the set of all multiples of m.
例8.4.3 (Q,+) is a subgroup of (R,+).
例8.4.4 ({[0],[2],[4]},+) is a subgroup of (Z6,+).
定理8.4.6 A subset H of a group (G,〃) is a subgroup if and only
if for all a,b∈H, a〃b-1∈H.
证明 定理8.4.6
定理8.4.7 If g is in a group G, gn=1 for some n, and p is the
least positive integer such that gp=1, then the set {1,g,g2,…gp-1}
is a subgroup of G.
定义8.4.4 If gp=1, then the set {1,g,g2,…gp-1} is called a finite
cyclic group(循环群), or more precisely, the cyclic group
generated by g, denoted by
In a cyclic group, it can be generated by one element.
(1) [1]是m阶循环群(Zm,+)的生成元.
(2) (Z,+)是无限阶循环群,其生成元只有1和-1.
(3) 有限循环群的生成元的阶就是群的阶(即群的元素的个数).
(4) 循环群的子群也是循环群.
(5) 每个循环群是可交换群.
定义8.4.5 For a subset H of a group G and any a in G, a〃H=(x:
x=a〃h for some h in H) is a left coset(左陪集) of H in G(可简记为aH). a称为该陪集的代表元.
类似地,可定义一个子群的右陪集Ha.
例8.4.5 Let G be the group (Z5,+) and H be the set
{5n:n∈Z}.Then k+H=[k]. So we have five distinct left cosets of
H and they form a partition of Z.
定理8.4.8 For a fixed subgroup H of G, the left cosets of H in G
are a partition of G.
证明 定理8.4.8
引理 If G is a finite group and H a subgroup of G, then all cosets
of H in G contain the same number of elements, namely , the
number of elements that are in H.
定理8.4.9(Lagrange) If G is a finite group and H is a subgroup
of G, then the order of H divides the order of G.
定理8.4.10 If G is a group of order n and g is in G, then gn=1.
(1) 任何素数阶的群不可能有非平凡子群;
(2) 有限群中阶数大于2的元素个数一定为偶数;
(3) 偶数阶的有限群一定有一阶为2 的元素.
(4) 任一有限群的阶均可被其子群的阶整除, 任一有限群的阶均能被其元素的阶整除.
(5) 任何素数阶的群一定是循环群,任何素数阶的群的任一非单位元素的阶均为这个素数,因此都可以作为该群的生成元.
(6) 设p为素数,m≥1,则pm 阶的有限群一定有阶为p的元素.
ASSIGNMENTS:
PP226:6,8,10,16,18,22
8.5 Groups and Homomorphisms
定义8.5.1 Let (G,〃) and (H,﹡) be groups. Let f:G→H be a
function. The function f is a homomorphism(同态映射) if
f(a〃b)=f(a) ﹡ f(b) for all a,b in G. The homomorphism f is said
to be a monomorphism(单同态映射) if f is a one-to-one, an
epimorphism(满同态映射) if f is onto, and an isomorphism(同构映射) if f is both one-to-one and onto.
例8.5.1 Let (G,〃) and (H,﹡) be groups and I be the identity of
H. If f:G→H is defined by f(g)=1 for all g in G, then f is a
homomorphism.
例8.5.2 Let (G,〃) and (H,﹡) each be the group of integers
under addition, and f:G→H is defined by f(g)=2g for all g in G,
then f is a homomorphism.
例8.5.3 Consider the two groups (Z,+) and (Z5,+) of
equivalence classes modulo 5. The function f:Z→Z5 defined by
f(a)=[a] is a epimorphism.
定理8.5.1 Let f:G→H be a homomorphism from group G to
group H and 1 be the identity in G. Then f(1) is the identity in H.
定理8.5.2 Let f:G→H be a homomorphism from group G to
group H and a be an element in G. Then f(a-1) is the inverse of f(a)
in H, i.e. f(a)-1= f (a-1).
定理8.5.3 If f:G→H be a homomorphism from group G to group
H and K is a subgroup of H. Then f-1(K) is a subgroup of G.
定理8.5.4 If f:G→H be a homomorphism from group G to group
H and K is a subgroup of G. Then f(K) is a subgroup of H.
定义8.5.2 For subsets H and K of a group (G,〃) , let H〃K={h〃k:
h∈H,k∈K}. When H={h}, then H〃K is usually denoted by HK.
定理8.5.5 If H, J and K are subsets of a group (G,〃), then
(H〃J)〃K=H〃(J〃K).
定义8.5.3 If H is a subset of a group (G,〃) and has the property
that gHg-1=H for all g ∈G, then H is called a normal
subgroup(不变子群,正规子群).
定义8.5.4 Let f:G→H be a homomorphism from group G to
group H. The kernel(同态核) of f is the set {x:x∈G and
f(x)=1}=f-1({1}), where 1 is the identity of H.
定理8.5.6 The kernel of a homomorphism f:G→H be a
homomorphism from group G to group H is a normal subgroup of
G.
证明 定理8.5.6
定理8.5.7 The subgroup H of a group (G,〃) is a normal
subgroup if and only if gH=Hg for all g ∈G.
证明 定理8.5.7
定理8.5.8 If H is a subgroup of a group (G,〃), then H〃H=H.
证明 定理8.5.8
定理8.5.9 If H is a normal subgroup of a group (G,〃), then
(a〃b)H=(aH)〃(bH).
证明 定理8.5.9
推论1 If H is a normal subgroup of a a group (G,〃), then the
cosets of H in G form a group under the operation
(aH)〃(bH)=(a〃b)H. The group is called the factor group(商群)
and denoted by G/H.
推论2 If H is a normal subgroup of a a group (G,〃), then f:G→H,
defined by f(a)=aH, is a homomorphism.
定理8.5.10(first isomorphism theorem for groups) Let
f:G→H be an epimorphism with kernel K. Then the quotient
group is isomorphic to H.
证明 定理8.5.10
定义8.5.5 The set of all permutations on a set of n elements forms a
group under the binary operation of composition. We call it the
symmetric group(对称群) and denote it by Sn.
例8.5.1 令A={1,2,3},那么集合A上的全体置换组成的集合S3 = {pi
i =
1,2,3,4,5,6}(pi如下所示)在函数的复合运算下成为一个群,其中 p1为么置换,p2-1=p2,p3-1=p3,p4-1=p4,p5-1=p6.
从另一个角度也可得到这个群.
设正三角形的三个顶点由1,2,3所标记(如下图).
1
l3
l1
l2
O
2 3
考虑以三角形中心o为轴的旋转σ0,σ1,σ2(旋转0,旋转120,旋转240),以及以直线l1,l2,l3的翻转(σ3,σ4,σ5).显然,每次旋转和翻转都对应于三角形顶点的一个置换,对应关系如下:
123 σ0(旋转0)
p1123
123 σ1(旋转120)
p5231
123σ2(旋转240)
p6312
123σ3(绕l3翻转)
p2213
123 σ4(绕l2翻转)
p3321
123 σ5(绕l1翻转)
p4132
例8.5.2 考虑集合{1,2,3,4}上的全体置换组成的对称群S4的一个子群G=(I,1,2,3,1,2,1,2). 称(G,)为八阶群或方形对称群.G中的任一置换
1 f=
f(1)
2f(2)3f(3)4
f(4)在几何上反映了一个以1,2,3,4为顶点的正方形旋转和翻转.
l2 l4
l1
1 2
l3
O
4 3
1234σ0(旋转0) I=
1234
1234 σ1(旋转90)
1=
2341
1234σ2(旋转180)
2=3412
1234σ3(旋转270)
3=4123
1234 σ4(绕l1翻转)
1=3214
1234 σ5(绕l2翻转)
2=1432
1234 σ6(绕l3翻转)
1=4321
1234 σ7(绕l4翻转)
2=2143
○
I
I
I
1
1
2
3
σ0
2
2
3
I
3
3
I
1
1
2
1
1
2
2
2
1
2
1
2
3
1
2
1
2
3
1
2
1
2
2
1
1
2
2
1
1
2
1
2
1
2
I
1
2
I
2
1
1
2
1
1
2
1
3
1
I
1
3
2
I
2
1
3
1
2
1
2
2
1
3
1
2
H1={I,
1,
2,
3}和H2={I,
2}都是该方形对称群的不变子群.
ASSIGNMENTS:
PP427:2,4,6,8,10
定理证明及例题解答
定理8.1.3
设a,b都是B的lub,则由lub的定义a≤b,b≤a.
≤是A上的偏序关系,a=b.
即B如果有lub则它是惟一的.
同理可证若B有glb,则它是惟一的.
定理8.2.4
对任一a∈S,因为f(a)=f(a),所以aRa,即R是自反的.
对任a,b∈S,若aRb,即f(a)=f(b),则f(b)=f(a),所以bRa,即R是对称的.
对任a,b,c∈S,若aRb,bRc,即f(a)=f(b),f(b)=f(c),则f(a)=f(c),所以aRc,即R是传递的.
从而R是一个S上的等价关系.
对任a,b,c,d∈S,若aRb,cRd,即f(a)=f(b),f(c)=f(d). 因为f是从S到T的同态映射,所以f(a﹡c)=f(a)〃f(c)=f(b)〃 f(d)=f(b﹡d),即(a﹡c)R(b﹡d),即R是一个同余关系.
定理8.2.5
对任一a∈S,因为a﹡a=a,所以a≤ a,即≤是自反的.
对任a,b∈S,若a≤ b,b≤ a,即a﹡b=b,b﹡a=a,则由于﹡满足交换律,所以b=a,即≤是反对称的.
对任a,b,c∈S,若a≤ b,b≤ c,即a﹡b=b,b﹡c=c,则由于二元运算﹡满足结合律,a﹡c=a﹡(b﹡c)=(a﹡b)﹡c=b﹡c=c,所以a≤
c,即≤是传递的.
从而≤是一个S上的等价关系.
下证a﹡b=lub{a,b}.
因为a﹡(a﹡b)=(a﹡a)﹡b=a﹡b,所以a≤a﹡b. 同理可证b≤a﹡b. 故a﹡b是{a,b}的一个上界.
若c是{a,b}的一个上界,则a≤c,b≤c. 从而(a﹡b)﹡c=a﹡(b﹡c)=a﹡c=c,即a﹡b≤c. 从而a﹡b是{a,b}的一个最小上界.
定理8.3.4
用反证法证明.
设x≠0. 令T={u: 0≤u≤x}. 因为x≤x,故T非空. 因为B有限,所以T也有限. 从而在T中有一个B的原子u. 因为u〃x=u≠0,这与已知条件矛盾.
定理8.3.5
记T={u: u 是B的一个原子且0
则x〃y=x〃(y1+y2+y3+…+yk)=x〃y1+x〃y2+x〃y3+…+x〃yk.
因为yi≤x, 1≤i≤k, 所以x〃y= x〃y1+x〃y2+x〃y3+…+x〃yk=y1+y2+y3+…+yk=y.
对B的所有原子x1,x2,x3,…,xn. 如果原子xi不在T中,则xi〃x=0且x〃y′〃xi=0. 如果原子xi在T中,则因为y′=(y1+y2+y3+…+yk) ′=
y1 ′〃y2 ′〃y3 ′〃…〃yk′,有xi〃y′= xi〃y1 ′〃y2 ′〃y3 ′〃…〃yk′ =0.
故xi〃x〃y′=0. 从而元素x〃y′与B的所有原子的(布尔)积都为0. 由定理8.3.4知x〃y′=0.
则x=x〃1=x〃(y+y′)=x〃y+x〃y′=y+0=y. 因此x能被表示为B的原子的和.
如果x能被以两种不同的方式表示为B的原子的和,则肯定有一个B的原子u出现在一个和式中但不出现在另一个和式中. 由于若u出现在一个和式中,则u〃x=u. 若u不出现在和式中,则u〃x=0. 这是不可能的. 从而x表示为B的原子的和的方式是惟一的.
定理8.4.4
记T={a,a2,a3,…}. 则T是G的子集. 由于G有限,故存在正整数
j和k,使得aj=ak. 不妨设j 定理8.4.5 设 s=pq+r ,其中0≤r 定理8.4.6 设H是G的子群,则H是一个群. 从而对任意a,b∈H,b-1∈H ,故a〃b-1∈H. 若对任意a,b∈H,有a〃b-1∈H. 则1=a〃a-1∈H且b-1=1〃b-1∈H. 所以a〃b=a〃(b-1)-1∈H. 因此〃也是H上的运算.故H是一个群.从而H是G的一个子群. 定理8.4.8 因为a∈a〃H,故每一个左陪集都是非空的. 且由于每一个左陪集都是G的子集,故它们的并是G的子集. 另外由于G的每一个元素a一定属于左陪集a〃H ,故G是左陪集的并的子集. 从而H在G中的左陪集的并就是G. 若左陪集a·H和b·H的交非空,即存在c∈(a·H)∧(b·H). 则存在h1, h2∈H使得c=a·h1=b·h2. 则存在h1, h2∈H使得c=a·h1=b·h2. 故h1·h2-1=a-1·b,h2·h1-1=(h1·h2-1)-1∈H. 所以a=b·(h2·h1-1)∈bH,b=a·(h1·h2-1)∈aH. 故aHbH且bHaH,即aH=bH. 故H在G中的左陪集构成G的一个分割. 定理8.5.6 设f是(G,〃)到(H,﹡)的同态映射. 记H=f-1({1}). 任取g∈G. 先证gHg-1是H的子集.任取h∈H,则f(g〃h〃g-1)=f(g)﹡f(h)﹡f(g-1)= f(g)﹡f(g)-1=1. 故g〃h〃g-1∈H. 〃-1再证H是gHg-1的子集.任取h∈H,则h=g〃(g-1〃h〃g)〃g. 记 h1= g-1〃h〃g. 则f(h1)=f(g-1〃h〃g )=f(g-1)﹡f(h)﹡f(g)= f(g) -1﹡f(g) =1. 故h1∈H.从而h∈gHg-1. 因此gHg-1=H. 所以H是G的不变子群. 定理8.5.7 设H是G的不变子群. 则对任意g∈G,gHg-1=H.先证gH是Hg的子集.任取h∈H,则g〃h〃g-1∈gHg-1,从而g〃h〃g-1∈H,即存在h1∈H,使得g〃h〃g-1=h1. 故g〃h=h1〃g∈Hg. 再证Hg是gH子集. 任取h∈H,则由于g-1〃h〃g∈g-1Hg,从而g-1〃h〃g∈H,即存在h1∈H,使得g-1〃h〃g=h1. 故h〃g=g〃h1∈gH. 从而gH=Hg. 类似可证,当对任意g∈G满足gH=Hg时,H是G的不变子群. 定理8.5.8 设H是G的子群. 则由于(H,〃)是群,故由运算的封闭性可知H〃HH.任取h∈H,则由于(H,〃)是群,1∈H且h=1〃h∈H〃H,从而H〃HH. 定理8.5.9 任取h∈H,则(a〃b)〃h=(a〃1)〃(b〃h). 因为 H是G的子群,所以a〃1∈aH b〃h∈bH. (a〃b)〃h∈(a〃b)H. 从而(a〃b)H(aH)〃(bH). 任取x∈(aH)〃(bH),则存在h,h1∈H使得x= (a〃h)〃(b〃h1)= (a〃b) (b-1〃h〃b)〃h1. 令h2= b-1〃h〃b. 则h2∈b-1Hb= b-1H(b-1)-1. 因为 H是G的不变子群,所以b-1Hb=H. 故h2∈H,从而h2〃h1∈H,因此x∈(a〃b)H.这就证明了(aH)〃(bH)(a〃b)H. 定理8.5.10 定义函数g:G/K→H by g(aK)=f(a) for all a∈G. 首先证明 g 的定义有效,即若aK=bK,则f(a)=f(b),即g(aK)=g(bK). 因为 aK=bK,所以存在h∈K使得a=b〃h. 因为K是同态核,所以f(h)=1. 故由f是一个满同态可得f(a)= f(b〃h)=f(b)﹡f(h)=f(b)﹡1=f(b). 再证g是一个群同构. 任取a,b∈G,g((aK)〃(bK))=g((a〃b)K)=f(a〃b)= f(a)﹡f(b)= g(aK)﹡g(bK) . 由于f是一个满同态,故g一定也是满射. 若g(aK)=g(bK),则f(a)=f(b). 任取h∈K,则a〃h=b〃(b-1〃a)〃h.令h2= b-1〃a. 则f(b-1〃a)=f(b-1)﹡f(a)=f(b) -1﹡f(a)= f(a) -1﹡f(a)=1. 故b-1〃a ∈K. 因为 K是G的不变子群,所以(b-1〃a)〃h∈K. 故a〃h∈bK. 即aKbK. 同理可证bKaK. 故aK=bK.这就证明了g是单射.
发布者:admin,转转请注明出处:http://www.yc00.com/web/1707781075a1523928.html
评论列表(0条)