2024年4月26日发(作者:数据恢复精灵破解版)
.(2019)30(6):1981–1996
/10.1007/s11676-019-00916-x
REVIEWARTICLE
Towardsanintegrativeapproachtoevaluatetheenvironmental
ecosystemservicesprovidedbyurbanforest
SamsonRoeland
1
•
MarcoMoretti
2
•
JorgeHumbertoAmorim
3
•
CristinaBranquinho
4
•
¨
loNiinemets
7
•
ElenaPaoletti
8
•
SilvanoFares
5
•
FedericoMorelli
6
•
U
PedroPinho
4,9
•
GregorioSgrigna
10
•
VladimirStojanovski
11
•
AbhishekTiwary
12
•
PierreSicard
13
•
CarloCalfapietra
10,14
Received:3November2018/Accepted:15January2019/Publishedonline:22March2019
ÓTheAuthor(s)2019
AbstractAsaNature-BasedSolution,urbanforestsdeli-
veranumberofenvironmentalecosystemservices(EESs).
ToquantifytheseEESs,well-defined,reliable,quantifiable
teratureanalysis
andexpertknowledgegatheredwithinCOSTAction
FP1204GreenInUrbs,weproposedaclassificationofurban
forestEESsintothreecategories:(A)regulationofair,
water,soilandclimate;(B)provisioningofhabitatquality;
and(C)
categoryisdividedintoEEStypes:(a)ameliorationofair
quality;restorationofsoilandwater;ameliorationofthe
microclimate;removalofCO
2
fromtheair;(b)provision
ofhabitatforbiodiversity;supportforresilienturban
ecosystems;provisionofgeneticdiversity;and(c)provi-
sionofenergyandnutrients;provisionofgreyinfrastruc-
Stypeprovidesoneormore
benefihofthese12benefits,weproposeasetof
indicatorstobeusedwhenanalyzingtheimpactsonthe
identifihalfofthe36indicatorsarerel-
evanttomorethanonesinglebenefit,whichhighlights
icatorsofwiderappli-
cabilityaretreeandstandcharacteristics,followedbyleaf
owl-
edgeisneededfortheoptimizationoftheEESsdelivered
byurbanforests,nowandinthefuture.
KeywordsUrbanforestsÁEnvironmentalecosystem
servicesÁIndicators
Projectfunding:TheworkwasfinanciallysupportedbyCOSTAction
FP1204GreenInUrbs,PRINprojectEUFORICC,andMinistryof
EducationandScienceoftheRussianFederation(theAgreementNo.
02.A03.21.0008).
Theonlineversionisavailableat
Correspondingeditor:YuLei.
&ElenaPaoletti
ti@
1
5
CouncilforAgriculturalResearchandEconomics(CREA),
ResearchCenterforForestryandWood,Arezzo,Italy
DepartmentofAppliedGeoinformaticsandSpatialPlanning,
FacultyofEnvironmentalSciences,CzechUniversityofLife
´
129,16500Prague6,Czech
´
ckaSciencesPrague,Kamy
Republic
InstituteofAgriculturalandEnvironmentalSciences,
EstonianUniversityofLifeSciences,Kreutzwaldi1,
Tartu51014,Estonia
InstituteofResearchonTerrestrialEcosystems(IRET),
CNR,SectionofFlorence,ViaMadonnadelPiano10,
SestoFiorentino,Italy
CentreforNaturalResourcesandtheEnvironment,Instituto
´
cnico,UniversityofLisbon,Lisbon1749-016,SuperiorTe
Portugal
6
DepartmentofBioscienceEngineering,ResearchGroup
EnvironmentalEcologyandAppliedMicrobiology,
LaboratoryofEnvironmentalandUrbanEcology,University
ofAntwerp,Antwerp,Belgium
SwissFederalResearchInstituteWSL,Biodiversityand
¨
rcherstrasse111,ConservationBiology,Zu
8903Birmensdorf,Switzerland
SwedishMeteorologicalandHydrologicalInstitute(SMHI),
¨
ping,SwedenSE-60176Norrko
ˆ
ncias,cE3c-CentreforEcology,EvolutionFaculdadedeCie
andEnvironmentalChanges,UniversidadedeLisboa,Campo
Grande,Lisbon1749-016,Portugal
7
2
8
3
4
9
123
1982
Introduction
Urbanareasareprojectedtoaccommodate68%ofthe
world’spopulationby2050(UnitedNations2018).Urban
forests(includingindividualtreesandshrubs,parksand
forests)playacrucialroleinimprovingtheenvironmental
qualityofcitiesandurbandwellers(Royetal.2012;
Shwartzetal.2014).Conventionalurbangreeningman-
agementprimarilyaimsatenhancingamenityvalues
(Panditetal.2013)andmaintainingbiodiversity(Llausa
`
s
andRoe2012),butgrowinginteresthasbeenfocusingon
carbon(C)managementperspectives(Grimmetal.2008)
andotherenvironmentalecosystemservices(EESs).
Ecosystemservices(ES)aredefinedasbenefitsthat
humansobtainfromecosystemfunctions(DeGrootetal.
2002),orasdirectandindirectcontributionsfrom
ecosystemstohumanwell-being(TEEB2010).ManyES
typeshavebeenidentifiedandgroupedintothree(provi-
sioning,regulating,andculturalservices,Maesetal.2016)
orfourcategories(theformerthree,plussupportingser-
vices;TEEB2010).Ameta-analysisonurbanESscon-
cludedthatmoststudieswereundertakeninEurope,North
AmericaandChina,andthatalmost50,20,11and15%of
thestudieswereaboutregulating,supporting,provisioning
andculturalESs,respectively(Haaseetal.2014).As
comparedtootherecosystemslikewetlandsornatural
forests,theattentiongiventourbanESsisstillinsufficient
(Go
´
mez-BaggethunandBarton2013),especiallywhenthe
focusisontheurbanforestalone(24%ofstudiesinthe
meta-analysisbyHaaseetal.2014).Intheanalysiscarried
outinthispaperweestablishedthatEESsincludeallESs
sensustricto,excepttheculturalservices(Fig.1).
BecauseEESsarebiodiversity-based,speciescomposi-
tionandcommunitystructureoccurringinurbanforestsare
crucialforthedeliveryofanyEESincities(Cardinale
etal.2012).Air-andclimate-relatedEESscompriseair
purification,climateregulationandCsequestration
(McDonaldetal.2007;Armsonetal.2012;Lafortezzaand
Chen2016).Othergoodsandservicescomprisethe
deliveryofenergy,food,non-timberforestproducts
10
InstituteofResearchonTerrestrialEcosystems(IRET),
CNR,Headquarters,ViaMarconi2,Porano,Italy
11
ForestFacultyinSkopje,UniversitySSCyrilandMethodius,
1000Skopje,Macedonia
12
FacultyofEngineeringandtheEnvironment,Universityof
Southampton,Highfield,SouthamptonSO171BJ,UK
13
ARGANS,260RouteduPinMontard,
06904SophiaAntipolis,France
14
DepartmentofLandscapeDesignandSustainable
Ecosystems,Agrarian-technologicalInstitute,RUDN
University,Miklukho-MaklayaStr.,6,Moscow,Russia
117198
123
detal.
RegulaƟon of AIR, WATER,
SOIL and CLIMATE
Provisionof HABITAT
QUALITY
Provisionof other
GOODS and SERVICES
Fig.1Type,relationshipsandmaindriversoftheenvironmental
ecosystemservices(EESs)ofurbanforests(UF).WeclassifyUF
EESsintothreecategories:(1)regulationofair,water,soiland
climate;(2)provisioningofhabitatquality;and(3)provisioningof
othergoodsandservices,withhabitatqualityascentraltotheother
ndrivers(UFmanagementandclimatechange)affect
allthethreeEESs
(NTFPs),freshandcleanwater,regulationofwaterrunoff
anderosion(Guoetal.2000;Royetal.2012).TheseEESs
actatthelocallevel,etorneighborhoodscale,
butmayalsoexertanimpactattheregionallevel,for
example,inrelationtoclimate-orwater-regulatingeffects
(Guoetal.2000).SeveralurbanforestEESsarecoupledto
ample,wateravailabilitycaninfluence
thecoolingeffectofurbanforests,butcanalsoaffectthe
lutionin
urbanizedareascanresultinpollutedsoils(Davidsonetal.
2006),surfacewaters(LePapeetal.2012)andground-
water(Galloetal.2012).Moreover,thedifferentenvi-
ronmentalconditionsoftenobservedwithintheurban
environmentascomparedtoitssurroundingscanaffectthe
physiologyofplants(Sicardetal.2016)andconsequently
theircapacitytoprovideEESs(Calfapietraetal.2015).
Science-basedevidenceonurbanforestEESsisneededto
identifyandassesstrade-offs,disservices(environmental,
socialandfinancial)andcomplexinteractionsamongdif-
tance,certaintreespecies(s)
mighttakeupgreatamountsofozone,whichisbeneficial
intermsofairquality,butthesamespeciesmightbea
strongemitterofbiogenicvolatileorganiccompounds
(BVOCs)andthuscontributetotheformationofozone
itself(Calfapietraetal.2013).
ToquantifytheurbanforestEESsanduntanglethe
complexinterrelationshipsamongtheminachangingcli-
mateandunderdifferentsocio-culturalconditions,EES
Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1983
indicatorsandtheirbenchmarkdefinitionsshouldbe
identifiindicatorsshouldbewelldefined,
measurable,reliableandstableparametersthataredirectly
orindirectlyrelatedwithoneormoreecosystemprocesses
ntificationandmonitoring
ofindicatorshelptolinkdecisionmakinginurbanplan-
ningandmanagementwithrelevantscientificknowledge
(Maesetal.2016).Suchisthecaseforbiodiversity,where
accountingfortheneedsofmultiplebiologicalgroupsisa
challengethatcanbeaddressedwiththeproperindicators
(Pinhoetal.2016).
Thereisanurgentneedtounderstandthecomplex
relationshipshighlightedabove,inparticularconsidering
theongoingclimaticandsocio-economicalchangesthat
affectworldwideurbanizedareasinanunprecedentedway.
Therefore,theaimofthispaperistoprovideanimproved
classificationofurbanforestEESs,discusstheirbenefits,
specificityandrelevanceinthecontextofotherEESs,and
defirkisanoutcome
oftheactivitiesoftheCOSTActionFP1204‘Green
Infrastructureapproach:linkingenvironmentalwithsocial
aspectsinstudyingandmanagingurbanforests’
(GreenInUrbs).
Theenvironmentalecosystemservicesofurban
forests
ClassificationofurbanforestEESs
WeclassifiedurbanforestEESsintothreemaincategories:
regulationofair,water,soilandclimate;provisioningof
habitatquality;andprovisioningofothergoodsandser-
nbythegreenarrowsinFig.1,habitat
quality,inthebroadersenseofitsdefinition,asthequality
oftheaboveandbelowgroundspacewhereurbantrees
live,iscentralfortheprovisioningofalltheotherEESs,
whileair,water,soilandclimateEESsalsoaffectthe
deliveryofothergoodsandservices(Chenetal.2016;
Giannicoetal.2016;Marianietal.2016;Pesolaetal.
2017).Ahighhabitatqualityofthelivingspaceofurban
treeswillpositivelyaffecttheirgrowth,survivaland
reproduction,enhancingtheirpotentialprovisionofmul-
nbenefitsandinter-
linkagesaresummarizedinFig.2bydifferentcolours.
Fifty-threepercentofthe36indicatorssuggestedhereinare
relevanttomorethanonesinglebenefit,whichhighlights
thecomplexinterrelationshipsamongdifferenturbanforest
icatorsofwiderapplicabilityaretreeand
,densityandcontinuityofthe
plantcover,treeage,architecture,diameteratbreastheight
(DBH),leafareaindex(LAI),canopyheight,treeheight),
followedbyleafphysicaltraits(shape,persistence,
orientation,wettability,hairiness,roughness,toughness,
albedo)andtreespeciescomposition(speciesidentityand
relativeabundance).
eithertheimpactontheenvironmentandthegeneralper-
ceptionbythepopulation,differsalongarural–urban
transect(Fig.3).Ameliorationofairqualityandmicro-
climate,aswellasbuildingpreservation,areofutmost
importanceincitiesgiventhedensityofpopulationand
builtinfrastructures,whileCO
2
sequestration,provisionof
energy,nutrientsandresources,andrestorationofsoiland
waterarequantitativelymoreimportantforforestsinrural
tqualityforbiodiversityisextremelyimpor-
tantinbothurbanandruralforests.
Regulationofair,water,soilandclimate
Byinteractingwiththeatmosphere,urbanforestsprovide
ervicescanbeclassified
intothreemajortypes:(1)ameliorationofairquality;(2)
restorationofwaterandsoil;(3)ameliorationofthe
microclimateandremovalofthegreenhousegas(GHG)
CO
2
fromtheatmosphere(Fig.2).TheseEESsprovidea
numberofbenefitsthataresummarizedas:(1)reductionof
airpollution;(2)soil/waterretention;(3)ameliorationof
thermalcomfort;and(4)carbonsequestration(thenumbers
refertotheindicatorsinFig.2).Foreachbenefit,avariety
indicatorscanbeeithercharacteristicsofindividualtrees
andtreecanopies(writteninlightgreeninFig.2)or
characteristicsoftheenvironmentwherethetreesare
located(inblackinFig.2).
Ameliorationofairquality
Urbanairpollutionisamajorthreattocitizens’health
(Pascaletal.2013).
nitrogenoxides(NO
x
),sulphurdioxide(SO
2
)andpartic-
ulatematter(PM),aredirectlyemittedbycombustionin
industrialprocessesandroadandnon-roadtransport(EEA
2015).Secondarypollutants,(O
3
)andsecondary
organicaerosols(SOA),areformedbyreactionsofpre-
cursorssuchasNO
x
andVOCs(LelieveldandDentener
2000).Amongthemajorairpollutants,PM,nitrogen
dioxide(NO
2
)andground-levelO
3
arestillthemostseri-
ouspollutantsintermsofimpactsonthehealthofEuro-
peanpopulation(EuropeanEnvironmentAgency2018),
andshouldbeprioritiesinurbancontext.
AirpollutionmitigationisarelevantEESprovidedby
urbanforestsduetoairpollutiondepositionandfiltering
(Nowaketal.2006;Escobedoetal.2011).Urbanforests
havebeenarguedtophytoremediatetheairbyremoving
PMandgases(Nowak2006;Groteetal.2016;Sicardetal.
2018).Areaswithhighurbanforestdensity,infact,have
123
detal.
lowerPMthanothersites(Irgaetal.2015).Althoughmost
oftheestimatessuggestquitelowmitigationpotentialsin
termsofatmosphericconcentrations,suchsmallpercent-
agestranslateintosignificantsavingsintermsofhuman
health(Nowaketal.2015,2018).
Urbanforestscanreducetheconcentrationofpollutants
intheatmospherebydirectdepositiononplantsurfaces
andstomataluptakeofgasesinsidetheleaves(Cieslik
etal.2009;Niinemetsetal.2014).Non-stomatalremoval
processesincludephysicaldepositiononanyexternal
surface,andapplytobothgasandparticlephases,although
itisimportanttoconsiderthatgasexchangealwaysoccurs
inabidirectionalmanner(Niinemetsetal.2014).Larger
treecrownshaveagreaterpotentialofamelioratingair
qualitybymaximizingpollutantdeposition(Paolettietal.
2004),eventhoughedgesofshrubsandsmallertreescan
beplantedextremelynearthesourceofpollution(
traffic)andthusalsomaximizepollutantfiltering(Popek
etal.2013;Morietal.2015).Therefore,thecharacteristics
ofthetreecover,inparticulardensityandcontinuityof
crowns,sizeandarchitectureofindividualtreecrowns,and
leafareaperunitgroundsurfacearea(LAI),arerecom-
,leafsurface
characteristics,forexample,cuticularmorphology,leaf
123
Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1985
b
Fig.2Classificationofthethreemainenvironmentalecosystem
services(EESs)providedbyurbanforests(inredintheouterlayer),
theirtypesandbenefits(1–12)(nextlayer),andindicators(wedges).
Interlinksofeachindicatortoabenefitaremarkedbythesame
torsofenvironmentorbiodiversityarewritteninblack.
descriptionofeachindicator:(a)Mainstandcharacteristicsare
density,continuityandage(VilharandSimonc
ˇ
ic
ˇ
2013;Frehneretal.
2005);(b)Maintreecharacteristicsarearchitecture,DBH,LAI,
canopyheight,treeheight(Tiwaryetal.2016;Nowaketal.2002;
ColdingandBarthel2013);(c)mainleafphysicaltraitsareshape,
persistence,orientation,wettability,hairiness,roughness,toughness,
albedo(LlorensandDomingo2007);(d)(Lietal.2007);(e)(Kumar
andImam2013);(f)Useofvapourpressuredeficitrecommended
(TiwaryandKumar2014);(g)(TiwaryandKumar2014);(h)Main
treeplacementcharacteristicsaredistancetoroad,arrangement,
orientation(Amorimetal.2013;Salmondetal.2013;Vosetal.2013;
GromkeandBlocken2015);(i)(Calfapietraetal.2013);
(j)(Carin
˜
anosetal.2016;Zielloetal.2012);(k)(Galloetal.
2012;LePapeetal.2012;TiwaryandKumar2014);(l)(Kleinetal.
2014);(m)(Patakietal.2011);(n)(Pearlmutteretal.2007;Shashua-
Baretal.2011);(o)(Fuetal.2015);(p)orplantcarbonstorage
(BISYPLAN2012);(q)(BaeandRyu2015);(r)includingnumberof
speciesandalphadiversity(Handleyetal.2015;Ikinetal.2015;
OishiandTabata2015);(s)(Knop2016);(t)Mainleafchemicaltraits
arechemistryandpalatability(Backhausetal.2014);(u)Main
speciescompositioncharacteristicsarespeciesidentityandrelative
abundance(Karpetal.2011;Ikinetal.2015;OishiandTabata2015);
(v)(SadanandanandRheindt2015);(w)Maincoarsewoodydebris
,densityofdeadwoodanddecaystages
(LehvavirtaandRita2002;LeRouxetal.2014);(x)Maintree-related
microhabitatscharacteristicsaredensitiesofcavities,cracks,bark
loss,anddeadbranches(LehvavirtaandRita2002;Terhoand
Hallaksela2008;LeRouxetal.2014);(y)Maintopologiesoftrophic
networkinteractionsarediversity,nestedness,andconnectance
(Baldocketal.2015;HarrisonandWinfree2015);(z)Main
functionalredundancycharacteristicsarenumberoffunctionally
redundantspecieswithinaneffectgroup(Elmqvistetal.2003;
Laliberte
´
etal.2010);(a)(Elmqvistetal.2003;Laliberte
´
etal.2010);
(ß)(TurriniandKnop2015);(r)(Braakeretal.2014a;Baldocketal.
2015;HarrisonandWinfree2015);(k)(AIEL2008);(u)(Lambin
andMeyfroidt2011);(w)(Bhatetal.2010);(q)(Lambinand
Meyfroidt2011);(p)(McLainetal.2012);(l)(Ticktinand
Shackleton2011)
wettabilityandhairiness,affectPM(Kardeletal.2012)
andO
3
deposition(Lietal.2018)thusrepresentinga
suitableindicator.
AnotherimportantleaftraitaffectingtheEESairquality
isthepersistenceoffoliagethroughouttheyear(evergreen
species)oronlyduringthegrowingseason(deciduous
species).Stagnantatmosphericconditionscombinedwith
higherprimaryPMemissionsfromresidentialcombustion
,European
EnvironmentAgency2018).Therefore,andwithoutcon-
sideringothereventualeffects,evergreenspeciesarerec-
contrast,gaseouspollutants,andinparticularO
3
,increase
duringthegrowingseason(Paoletti2006,2009);thus,
deciduousspeciesarebettersuitedforfilteringgaseousair
Fig.3Schematicrepresentationofthemaintypesofenvironmental
ecosystemservices(EESs)andhowtheirrelativeimportancechanges
sprovidedbyurbanforestsare
similartothoseprovidedbyforestsinruralareas,whiletherelative
importancedoesdifferexceptforhabitatquality,whichisequally
importantalongtheurban–ruralgradient
pollutantsprovidedtheydonotemitBVOCsoremitthem
atalowrate,asBVOCsfavourtheO
3
formation(Cal-
fapietraetal.2013).Inaddition,deciduousspeciesmay
havehigherstomatalconductancethanevergreenspecies
(Larcher1995)andthusmaximisetheairpollutantuptake
depositiononleafsurfacesmay
beratherlimitedunderdryconditions,whileonwet
wetness,however,isadifficultparametertomeasureand
cannotbeproposedasanindicator,whereasthevapor
pressuredeficitoftheair(VPD)isasimpleparameter
combiningairtemperatureandrelativehumidity(RH)and
canberecommendedasaproxyofleafcapacityforwet
deposition(orreleaseoncetheleavesdryoutandthe
volatilesaregassedout).
Thecapacityoftreestoremovepollutantsmaylargely
differunderstressconditions(Sicardetal.2018).Species
selectionforairpollutionmitigationshouldthusconsider
theabilityofatreespeciestoadapttolocalconditions;for
example,sclerophyllousspeciesadaptbettertowarm
environments(Larcher1995).Awater-savingapproachby
activelycontrollingstomatalconductanceisalsotypicalin
warmclimates(mostcommonlyinevergreenneedle-
leavedspecies),whereasawater-spendingstrategyismore
typicalintemperate/coldregions(indeciduousbroad-
leavedspecies)(LoGulloandSalleo1988;Karabourniotis
etal.2014).
Insideleaves,gaseouspollutantscanbescavengedby
antioxidantenzymes(Niinemetsetal.2014).Although
123
1986
suchscavengingabilityisspecies-specific,extensiveindi-
vidualvariability,broadseasonalityandnumerouscom-
poundsinvolvedinscavengingmaketheassessmentofthis
parameterunsuitableasanindicatoroftheEESairquality.
Non-stomatalremovalprocessesalsoincludechemical
depositionresultingfromgas-phasereactionsbetween
pollutants(mostlyO
3
andNO
x
)andBVOCsemittedfrom
,plantsorsoil)(Faresetal.2010).The
emissionofBVOCsisspecies-specificandislight-and
temperature-dependent(Groteetal.2013;Niinemetsetal.
2011).HighBVOCemittersaretypicallybroadleafplants,
suchasthegenusEucalyptus,PopulusandQuercus,with
thehighestemissionsoccurringduringspringandsummer
(BenjaminandWiner1998;Calfapietraetal.,2009).The
downsideisthatBVOCsthemselvescanpromotehigherair
pollutionduetotheproductionofsecondarypollutants
(Calfapietraetal.2013).AdoptinglowBVOC-emitting
speciesinurbanforestsisthuscrucialfortheEESair
quality(BenjaminandWiner1998;Renetal.2014).In
additiontothespecies-specificBVOCemissionfactor,
however,theamountofemittingleavesaffectsthetotal
ore,largercrowns
constituteanegativeindicatorofairqualityinBVOC-
emittingspecies.
Atrade-off(orenvironmentaldisservice)ofurbanfor-
pe,113millionindividuals
sufferfromallergicrhinitisand68millionfromallergic
asthma(EFA2011);bothnumberswilllikelyincreasedue
toclimatechange(Forsbergetal.2012).Pollenaffects
humanhealthbytriggeringsuchallergicreactions(Bartra
etal.2007;Carin
˜
anosetal.2016).Pollendepositionon
leafsurfaces,however,helpstoabatepollenconcentrations
intheair(DzierzanowskiandGawronski2011;Terzaghi
etal.2013)likelybymechanismssimilartothoseregu-
anforestpollution-pollen
nexus,however,tance,recent
evidencesuggeststhatairpollutioncanchangetheprotein
profileofallergenicpollensandthismayincreasethe
symptomaticresponseinsensitivepeople(Hingeetal.
2017).ThereviewbyGroteetal.(2016),producedwithin
COSTActionFP1204,pointsouttocrucialknowledge
gapsassociatedwiththeemissionofpollenandVOCs,
stressingtheneedofholisticinvestigationsoftheseinter-
relatedprocesses.
Researchhasshownthatthepresenceofroadsidetrees
instreet-canyonscandisrupttheupwardstransportofair
pollutantemissions,increasingtheirstoragewithinthe
canyonandreducingthepenetrationofcleanairfromaloft.
Asaresult,higherpollutantconcentrationsmaybe
observedatpedestrianlevelwithinvegetatedcanyons
(Amorimetal.2013;Salmondetal.2013;Vosetal.2013;
GromkeandBlocken2015),whichcanalsoconstitutea
123
detal.
tstudyranked95
urbanplantspeciesbasedontheabilitytomaximizeair
quality,byremovingO
3
,NO
x
andPM,andminimizethe
associateddisservices(Sicardetal.2018).However,fur-
therinvestigationoftheinter-relationsbetweenplant
characteristics,microclimate,streetconfigurationandpol-
lutantemissionsisstillwarranted.
Restorationofsoilandwater
Urbanizationcannegativelyimpactstreamanddrinking
waterqualitybyincreasingtheloadsofnutrients,metals
andorganicpollutantstosurfaceandgroundwater(Gallo
etal.2012;LePapeetal.2012).Freshwaterprovisioning
andwaterpurificationareoftopicalinterestinurbanized
areas(VilharandSimonc
ˇ
ic
ˇ
2013).Urbanization,causing
soilsealingandareductionofvegetatedsurfaces,increases
floodingfrequencyanddurationduetoenhancedparti-
tioningofrainfallintorunoff(Galloetal.2012).Urban
forestscontributetostormwaterharvestingthroughthe
interceptionofprecipitation(LlorensandDomingo2007),
therebyplayingamajorroleinsustainingurbanwater
balanceandreducingstormwaterrunoff(Patakietal.
2011).Owingtotheirlevelsofinfluence,canopyandleaf
characteristics(includingcanopystructureanddensity;
shapeandorientationoftheleaves)aresuitableindicators
forthisbenefit.
Theinfluenceofforestcoveronsoilwaterretention
capacitydependsonthemedium-andlong-term
improvementofsoilconditions(Frehneretal.2005).
Urbanforestscanincreasethiscapacityespeciallyinthe
caseofslowlydrainedtoverywetsoils,whereas
improvementinwelldrainedsoilsismuchless(Lee1980).
Infiltrationduetourbanforestsdependsmainlyonthe
densityandcontinuityoftreecanopiesandgroundvege-
tationcover,andisoflittleimportanceforindividual
street-trees(VilharandSimonc
ˇ
ic
ˇ
2013).Soilwaterreten-
tioncapacityiscloselylinkedtotherootsystemperfor-
manceoftreesandincludesthewater-holdingcapacityof
organicandmineralsoil,aswellasofthelitterlayer(Klein
etal.2014).Incities,however,,
ore,the
indicatorsforthisbenefitare:leaftraits(shapeandorien-
tation;ous),speciescomposition,tree
andplantcovercharacteristics(rootsystem,density,con-
tinuity,andplacement),precipitationandrunoff,andsoil
water-holdingcapacity.
Ameliorationofthemicroclimate
Awell-knowneffectofurbandevelopmentisthewarmer
temperatureincitiescomparedtothesurroundingrural
Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1987
areas,knownastheurbanheatisland(UHI)(Oke1982).
Themagnitudeofwarmingthatcharacterizesagivencity
UHI,omfortandenergy
demand,-
age,urbantemperaturesareabout1–3°Cwarmerthanthe
surroundingruralenvironments,butunderwarmsummer
conditionstheycanbe[10°Cwarmer(Millsetal.2010).
Vegetationcontributestothereductionofheatstressand
windspeedeveninthesurroundingareas,withacooling
effectthatcanextendhorizontallyforupto1000minto
thebuilt-uparea(Bowleretal.2010;Klemmetal.2015).
Thelargestcoolingimpactoftreesisobservedonclearand
hotsummerdays(Bowleretal.2010).Inwinter,airtem-
peratureisslightlyreducedbyevergreentrees,withno
clearimpactonthermalcomfort(Cohenetal.2012).
Coolingofairtemperatureduetourbanforestsishigher
duringthedaythanduringthenightinsummerandthe
oppositeistrueinwinter(atleastinthedry-warmcondi-
tionsofthestudybyCohenetal.(2012)),whereascooling
ofsurfacetemperatureisgreaterduringthedayinsummer
andnearlysimilarduringthenightthroughouttheyear.
Surfacetemperaturewithinagreenspacemaybe15–20°C
lowerthanthatofthesurroundingurbanarea,givingriseto
urbanairtemperaturescoolerby0.3–9.5°C(Saaronietal.
2018).ThereviewpaperbySaaronietal.(2018),also
supportedbyCOSTActionFP1204,showednoapparent
correlationofthispark-inducedcoolingwithintheclimatic
region,whileatendencyforlargergreensites([2ha)to
induceastrongercoolingeffect([4°C)wasobserved.
However,theextentandmagnitudeoftheimpactson
humancomfortandbuildingenergydemandarefarfrom
beingeffectivelyquantifiedespeciallyduetotheirsite-
specificnature.
Urbanforestsamelioratethemicroclimateessentially
viaevapotranspirationandshading(DimoudiandNikolo-
poulou2013).Shadingbytreesreducesbothshort-wave
(direct,diffuseandreflected)andlong-waveradiation
emittedfromsurfaces(Saaronietal.2018).Whenleaves
areheatedbysolarradiation,thecoolingprocesstakes
ationoccursfromwet
,afterrainfall),whiletranspirationtakes
,shadingbytreesproducesa
netcoolingeffectinthebelow-canopyregion(Akbarietal.
2001).Plantfunctionaltraitsplayamajorroleinthissense,
sincecrownarchitectureandshape,leafclumpingand
orientation,andtheamountoffoliage(oftenexpressedas
LAI)determinetheinterceptionofsolarradiation(Cescatti
andNiinemets2004;Disney2015).Evergreentreesimpact
themicroclimatethroughouttheyear,whereastheeffectof
deciduousbroadleavesismostlyrestrictedtothegrowing
yrepresentabenefitintemperateregions
wherethepenetrationofsunraysthroughthecanopyis
benefi,extensiveareasof
shadowareusuallynotdesiredinoutdoorurbanenviron-
mentsathighlatitudecities,whichcreatesanadditional
challengeforarchitectsandurbanplanners(Lindbergetal.
2014).
Themostrelevantenvironmentalindicatorsinthe
ameliorationoftheurbanmicroclimateareairtemperature
andRH,astheycontributetothethermalcomfortofpeople
(Suscaetal.2011),
UniversalThermalClimateIndex(UTCI)andthePhysio-
logicallyEquivalentTemperature(PET)areuseful
biometeorologicalindices(Matzarakisetal.1999;Bro
¨
de
etal.2012),butwereconsideredtoocomplexforbeing
includedinFig.2asindicators.
Sequestrationofcarbondioxide(CO
2
)
Anotherimportantbenefitofurbanforestsistheircapacity
toremoveCO
2
ghtoccur
directlythroughphotosynthesisandindirectlythrough
energysavingstriggeredbymicroclimaticamelioration
(Rosenfeldetal.1998).Incities,theanthropogenicemis-
sionofCO
2
isfarabovethecapacityoftreestosequester
andstoreit(Briberetal.2013).Forinstance,urbanforests
intheUSAwereestimatedtostore712MtC,corre-
spondingtoagrosssequestrationof23MtCannually
(NowakandCrane2002),i.e.,16%oftheCstoredin
naturalforests(Woodburyetal.2007).Conversely,urban
forestsemitCO
2
totheatmosphereviarespiratorypro-
r,astheremovalusuallyexceedsthe
emission,forestsactasanetsinkofatmosphericC
(Thorntonetal.2002).Photosynthesistakesplaceunder
favourableconditionsforplants,whilestresscausedby
pruningorseveredroughtmaypromoterespiratorypro-
cesses,whichinsomecasesinducetreestoactasanetC
ral,CO
2
uptakecapacityperleafareaunitis
species-specific,beinghigherindeciduousbroadleavesand
lowerinevergreenspecies(Wrightetal.2004).Total
uptakedependsonboththephotosyntheticcapacityand
totalamountoffoliage,aswellasontheradiationavailable
withintreecanopies(Niinemets2015).Allthesetraits
tration
capacityvariesalsowiththetypeofgreenspace,being
higherinroadsidevegetationthatisclosertothetraffic
source(Wuetal.2010).TheCremovedfromtheatmo-
sphereisthenstoredinabove-andbelow-groundbiomass
andinsoilorganicmatter,whichareotherrelevantindi-
catorsofthelong-termcapacityofurbanforeststostore
singsoilorganicmatter,however,is
negligibleforindividualstreet-treesintheshortterm(Vi-
dal-Beaudetetal.2015).
123
1988
Provisioningofhabitatquality
Provisionofhabitatforbiodiversity
Forestsareamongthemostspecies-richterrestrial
ecosystems(Crocietal.2008;JimandLiu2001;Ku
¨
hn
etal.2004).Thisextendedmulti-dimensionalgreenspace
representsaresourceforurbanbiodiversity,including
wood-dwellingorganisms(Grimmetal.2008).Ifwell
designedandmanaged,urbanforestsareexpectedto
favourtheoverallgreenconnectivityacrossfragmented
anddenselybuiltareasenhancingthepermeabilityofthe
urbanmatrixforforest-andwood-dwellingspeciesandfor
biodiversityingeneral(Vergnesetal.2012;LaPointetal.
2015).
Inthelastdecades,biodiversityhasemergedasoneof
themostimportantenvironmentalconcerns(Hooperetal.
2005).Thereisagrowingconsensusthatbiodiversity
determinesecosystemfunctionsandunderlyingservices
(Isbelletal.2011;Cardinaleetal.2012)whilecontributing
,urbanbio-
diversityconstitutesnotonlyamatterofscientificinterest
butalsoanobjectofincreasingpublicconcern,andcould
beparticularlysensibletoclimatechange(Puppimde
Oliveiraetal.2014).Anapproachbasedonfunctional
diversitycanprovidethelinkbetweenbiodiversityand
EESsbytakingintoaccountthecommonfunctionsthat
speciesperforminecosystemsorthewayspeciesrespond
toanenvironmentalconstraint(Pinhoetal.2016).
TheEESsthaturbanforestsprovidetohabitatquality
canbeclassifiedintothreemajortypes:(i)provisionof
habitatforbiodiversity;(ii)supportforresilienturban
ecosystems,and(iii)provisionofgeneticdiversity(Fig.2).
TheseEESsprovideanumberofbenefitsthataresum-
marizedas:(5)provisionofresourcesforspecies-richand
abundantcommunities;(6)provisionof‘‘nursery’’treesfor
nativesaproxylicspecies;(7)supportoffunctionallyresi-
lientspeciescommunities,and8)provisionofecological
connectivityandgeneticflow(thenumbersrefertoFig.2).
Thebenefitindicatorscanbeeitherfeaturesofindividual
treesandforestpatchesorcharacteristicsoftheenviron-
mentwheretreesandforestsarelocated,ortaxonomicand
functionalmetricsreflectingdifferentcomponentsofbio-
diversity(Fig.2).
Speciesrichnessandpopulationsizeareimportant
componentsofbiodiversity,whichreflecttheamountand
,typeofleavesand
brancharchitecture)x
vegetationstructuresarelikelytoincreasetheavailability
offoragingandbreedingresourcesforamultitudeof
organisms,enhancingthenumberanddiversityofspecies
within(alphadiversity)andacross(betadiversity)forest
stands(McElhinnyetal.2006;Tassickeretal.2006).
123
detal.
Spatialandtemporalheterogeneityofurbanforestscanbe
obtainedbymaximizingspeciescompositionanddemo-
graphicstructures,thusaffectingthetypeofleaves,branch
architecture,tree-relatedmicrohabitatsandcoarsewoody
debris.
Urbanforestscanmaintainandevenincreaseoverall
richnessthankstothepresenceofexoticplant/animal
species(Pys
ˇ
ek1998;Celesti-Grapowetal.2006;Nobis
etal.2009),whosenumberishigherinurbanenvironments
comparedtoruralareas(Czechetal.2000;McKinney
2002,2006;Sattleretal.2011,butseeCadotteetal.2017).
Thepresenceofexoticanimalspecies,especiallyarthro-
pods,intheurbanenvironmentmightbeunderestimated
duetothelackofinformationandreferencespecieslists.
However,itiswelldocumentedthattheintroductionof
alienspeciescancausenegativeeffectsonforestecosys-
tems,bymodifyinghabitatsandpotentiallydisruptsome
naturalinteractionsamongspecies,whichcanalterkey
functionsinsuchecosystems(McAfeeetal.2006).Onthe
otherhanditcanalsoprovidearesourcefororganisms
fromdifferenttrophiclevels,thustakingoverthefunc-
tionalroleofendemicspeciesthatgotlocallyextinct
(Finertyetal.2016;GrayandvanHeezik2016;).
Besidesfavouringspeciesthatuseurbanforestsasa
sourceoffoodandshelter,urbanforestsprovidehabitatfor
obligatecanopy-andwood-dwellingorganisms,also
defipecies,suchasfungi,
mosses,lichens(Speight1989),aredependentupon
decayedwoodduringpartoftheirlifecycle.‘‘Nursery’’
treesforsaproxylicspeciesarerelatedtotheconceptof
‘‘habitattrees’’definedasdeadorliving,verylargeandold
microhabitat-bearingtrees(Bu
¨
tleretal.2013).Thepres-
enceofwoodydebrisandthenumberoftree-related
habitatsinfluencethespeciescompositionandgenetic
diversityoftheseorganisms,andimprovethefunctional
connectivitybetweenforestpatchesandoldtrees(Van-
dekerkhoveetal.2013).Singlehabitattreesorpartsof
urbanforeststandsneedtobewellconnectedwithfloral
feedingresourcesinsunnyopengreenareasdistributed
withinafewhundredmeters.
SupportforresilienturbanecosystemsUrbanforestsare
usuallydominatedbyopenenvironmentsandareoften
designedtoaccomplishrecreational,aestheticandregula-
tionfunctions(Nowak2006).Thecharacteristicsofurban
habitatsandthesimilarityinurbangreenssuggestthatthe
specieslivingincitiesconvergetowardasubsetofrather
homogenousspeciessharingacommonsuiteoftraits
(Haaseetal.2014;Knappetal.2008).Thiseffectisrec-
ognizedas‘biotichomogenization’(McKinney2006),and
havedeepimplicationsforconservation(butseeColding
2007;Lepczyketal.2017whenurbangreenspace
heterogeneityisincludedinthemodels).Specieslivingin
Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1989
urbanareastendtobemoregeneralistthanspecieslivingin
ruralareasorintothewild(Claveletal.2011).The
increaseofecologicallysimilarspeciescanleadan
increaseofredundancyoftheassemblages(differentspe-
cieswithsimilartraits,ecologicalrolesandfunctions)
(AlbertiandMarzluff2004).Sincemanyecosystemfunc-
tionsultimatelyrelyoninteractionsbetweenprimarypro-
ducers(plants)andothertrophiclevels(ators,
soildecomposers,andherbivores),theredundancyand
,Elmqvistetal.2003)shouldbe
extendedtomulti-trophicsystems(Lavoreletal.2013)and
includemetricsofbioticinteractions(formeasuringfunc-
tionalredundancyandresponsediversity)asindicatorsof
,Freyetal.
2018;Treschetal.2019).
Provisionofgeneticdiversity
Heterogeneousandstructurallycomplexurbanforests
mightnotbeenoughtomaintainviablepopulationsand
promotefunctionallyresilientspeciescommunitiesiftrees
andforestpatchesremainisolatedortoosmall(Turriniand
Knop2015).Communitiesinsmallandisolatedpatches
tendtocontainfewerspeciesandtobecomeincreasingly
homogenousintaxonomicandfunctionalcomposition
(McKinney2006;Knappetal.2008;TurriniandKnop
2015),thereforereducingtheresponsediversityofspecies
communities(Elmqvistetal.2003).Thespatialconfigu-
rationofurbanforestsand,inparticular,habitatconnec-
tivity,definedastheconnectednessofhabitatpatchesfora
givenspecies(FischerandLindenmayer2007),play
importantrolesinenhancingtaxonomicandfunctional
vourtrophicinteractions,
successfulreproduction,dispersalandgeneticexchange,
andproviderefugefrompredators(Tayloretal.2006),
whileenhancingmeta-populationandmeta-community
dynamics(Leiboldetal.2004;Vergnesetal.2012;
LaPointetal.2015).Thisisparticularlyimportantinview
tialscaleatwhich
ecologicalconnectivityvariesdependsonspeciescompo-
sition(LaPointetal.2015).Forsessileandlowdispersal
organisms,suchasplants,soilfaunaandgrounddwellers,
thespatialconfigurationofurbanforestsactswithintens
andhundredsofmeters,whileitexpandsuptoafew
kilometersforflyingorganismssuchasbees,birdsandbats
(Sattleretal.2010;Braakeretal.2014a,b).Indicatorsof
well-connectedpopulationsofforest-dwellingspeciesand
nt
patterns,thegeneticdiversityofmodelspeciesandfunc-
tionalresilienceofcommunities,includingtopologiesof
multi-trophicnetworkinteractions,arepromisingtools(La
Pointetal.2015).
Provisioningofothergoodsandservices
Provisionofenergyandnutrients
AnothermajorcategoryofEESsprovidedbyurbanforests
istheprovisioningofothergoodsandservices(Go
´
mez-
BaggethunandBarton2013;HansenandPauleit2014).
TheseEESscanbeclassifiedintothefollowingtwotypes:
(i)provisionofenergyandnutrients;and(ii)provisionof
greyinfrastructureresilience(Fig.2).TheseEEStypes
provideanumberofbenefits:(9)bioenergyandcompost;
(10)foodandfeed;(11)non-timberforestproducts
(NTFPs);and(12)buildingpreservation(thenumbersrefer
toFig.2).Individualindicatorscharacterizingtheprovi-
sioningofdifferentgoodsandservicesfromtreesorthe
environmentaresuggestedanddiscussedbelow.
Twopossibilitiesforresourcerecoveryareusually
considered:nutrientrecoveryviacompostingthefoliage
and/orenergyrecoveryviabiomassproductivity(interms
ofcalorificvalue).Woodyvegetationisanimportant
renewableresourceforbioenergy,alleviatingthegrowing
demandforcroppedbiofuels(deRichteretal.2009).
Large-scalecommercialplantationsoftreessuchaspoplar
andwillow,mainlyinurbanparksandperi-urbanwood-
lands,mayfulfilthecurrentdriveforenergysustainability
fromrenewablebiomass(Djomoetal.2015;Seideletal.
2015).Forexample,sustainablygrowntreebiomassis
projectedtoprovideupto10%oftheUKenergyneedsby
2050andtosignificantlycontributetothereductionof
GHGemissions(DECC2012).Thebiomasspotentialis
evaluatedbymultiplyingtheprimaryproductionbythe
residue-to-productratio,whichisatree-specificindicator
(BISYPLAN2012).Therecoveryofbioenergy,mainlyas
heatfromthecombustionofmanagedurbanforests,is
ting
value(expressedinwettons)isrelatedtoitstypicalstoi-
chiometricchemicalcomposition(AIEL2008).Therefore,
suitableindicatorsofbioenergyprovisionpotentialinclude
tree-specificstructuralcharacteristics,biomassyieldand
antlimitations
arethemanyenergycrops,suchaswillowandpoplar,
whicharestrongemittersofallergensandBVOCs(Olof-
ssonetal.2005;Owenetal.2013),andbiomasscom-
bustionthatemitsconsiderableamountsofPM(Limetal.
2015),bothofwhichcouldadverselyaffectairquality.
Urbanforestshavethepotentialtoofferasourceof
,foodandfeed).Com-
munityscaleandindividualinitiativesaregainingpopu-
larityforsecuringsustainablefoodproductionwhile
ensuringminimalenvironmentalfootprints(Lambinand
Meyfroidt2011).Althoughthereisahugepotentialfor
urbanforestEESstoprovideasustainablesupplyof
nutritionfromtrees(,seeds,roots),thereare
123
1990
limitationsposedbytheirtoxicityandedibilityforhuman
consumptiondrivenbypollutionoftheurbanhabitats
(Bhatetal.2010).Therefore,toxicityandthecommercial
valueofproductswereidentifiedasthekeyindicatorsfor
thisbenefition,productivityisconsideredasa
measureofthevolumeofsupplythatcanbeacquiredto
ndicatorsareapplicabletowards
ensuringcost-competitivenessandwidespreadsustainabil-
ityincentivesinboththedevelopedanddevelopingworlds.
Mostresourcemanagementdecisionsarestrongly
infl
associatedwithNTFPs(,flowers,leaves,bark,
cones,galls,resins,springbuds,fungi,honey)accountfor
approximately25–96%ofthetotaleconomicvalueof
forests(Palahietal.2008).Thecost-competitivenessof
theseproducts,however,largelydependsontheiracces-
sibility(McLainetal.2012)andmarketability(Ticktinand
Shackleton2011),whichhavebeenidentifiedaskey
indicatorsforassessingthisbenefit,togetherwiththecli-
maticconditionsthataffectNTFPgrowth.
Provisionofgreyinfrastructureresilience
Incorporatingurbanforestsintotheurbanbuiltspaceis
gainingpopularityasacost-effectiveandlong-termmea-
sureformitigatingclimatechangeimpactsassociatedwith
proliferatinggreyinfrastructure(CABE2010;Hamdouch
andDepret2010;Wangetal.2018).Theroleofurban
forestsindevelopingresilienceandenvironmentalstew-
ardshipincities(ColdingandBarthel2013)andinthe
preservationofbuildings(includingbridges,carparksand
historicalmonuments)mainly
attributedtothealteredmicro-meteorologicalprofileand
chemicalwitheringofbuildingmaterialscausedbyair
pollutionandthechangingclimate(KumarandImam
2013;TiwaryandKumar2014).Asthisisinfluencedbyan
interplaybetweenplantmorphological,biophysicaland
chemicaltraits,thesuitableindicatorsofthisEESbenefit
includetreecanopyarchitectureandpositionrelativeto
buildinginfrastructures,leafphysicaltraits,micro-meteo-
rologyandtheconcentrationofpollutants.
Conclusions
Ecosystemservicesplayacrucialroleintheoptimization
orestscanreduceairpol-
lutionandgreenhousegasemissions,sequestercarbon,
regulateairtemperature,mitigatestormwaterrunoff,
reducenoise,aswellasproviderecreational,social,psy-
chologicalandaestheticbenefistudy,weprovide
36indicatorsthatcanbeusedforquantifyingurbanforest
EESs,predictingclimatechangeeffectsonurbanforests,
123
detal.
anddevelopingscientificallysoundstrategiesforoptimiz-
ingthemanagementofurbanforestsandmaximizingtheir
ndicatorsmayalsobecombinedtodevelop
summaryindices,suchasthe‘‘pollutionfluxpotential’’
index(Tiwaryetal.2016).Aroundtwo-thirdsofthemare
indicatorsoftreesandforeststandsandcanbeobtainedby
measurementsorliteraturedata,whileone-thirdareindi-
catorsofenvironmentalorbiodiversitycharacteristicsand
seindicatorsallow
efficientquantitativeassessmentsofurbanforestEESson
largeareasandacrosscities,eventhoughtheystillneedto
beadequatelyandrigorouslytested,especiallywhen
appliedacrosstaxa,
improvedunderstandingisneededtoincreasethewilling-
nessofpublicentities(Vuletic
´
etal.2010)andprivate
companies(Glu
¨
cketal.2010)toacknowledgeurbanforest
EESs.
Citiesareconstantlyevolving(Stottetal.2015).Dif-
ferencesintheurbanizationprocessdependonthehistor-
icalbackground,urbandesignandavailablegreenspaces
ore,guidelinesontheopti-
mizationofEESsandtherelatedchoiceofspeciesand
plantingarchitecturearecase-specificandmustrelyon
edifferentEESsarestrongly
interconnectedandsometimesshowcomplexandcon-
trastinginteractions,thechoiceanddesignofurbanforests
requirealocalbutscience-basedapproach.A‘‘species
selector’’shouldbedevelopedineachcontinentasatoolto
helppolicy-makerstodefinesuitableurbanforestman-
agement,includingpropertreespeciesselection,by
ging
approachinthisregardistoconsiderurbanforestsas
Nature-BasedSolutionsintheurbanenvironmentand
integrationofNature-BasedSolutionsisrecognizedasa
waytoachieveseveralenvironmental,social,cultural,
economic,policyandplanningaims(HansenandPauleit
2014;MadureiraandAndresen2014),andasatoolto
maximizecityresiliencetoclimatechangewhilemini-
,maintenancecosts,
infrastructuredamage/degradation,allergicreactions).
ThereisstilllittleinformationavailableontheEESspro-
videdbyurbanforestsandtowhatextenturbanforestsplay
portant
torecognizethaturbanforestEESsconfersubstantial
economicvaluetohumansocietiesandactivitiesinurban
areas(Haaseetal.2014).Accuratecalculationsofurban
forestEEScapacity,basedontherecommendedindicators,
willprovideabasisfortheeconomicevaluationsof
changesandenablestakeholderstoestimatethetrade-offs
betweenEESsandotherservices,suchasagriculturalfood
production(MEA2005)orurbanization(Dobbsetal.
2011).
Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1991
AcknowledgementsThisworkwascarriedoutwithinCOSTAction
ktheparticipantsofourconferences
forsharingtheirexpertknowledgeindefiningtheurbanforestEES
publicationwasfinanciallysupportedbytheMinistryofEducation
andScienceoftheRussianFederation(theAgreementNo.
02.A03.21.0008).WeacknowledgeARCHESConseilsfordrafting
ationwascarriedoutwithinthePRINproject
EUFORICC.
OpenAccessThisarticleisdistributedunderthetermsofthe
CreativeCommonsAttribution4.0InternationalLicense(crea
/licenses/by/4.0/),whichpermitsunrestricteduse,
distribution,andreproductioninanymedium,providedyougive
appropriatecredittotheoriginalauthor(s)andthesource,providea
linktotheCreativeCommonslicense,andindicateifchangeswere
made.
References
AIEL,ItalianAgroforestryEnergyAssociation(2008)Woodfuels
ed03Jan2018
AkbariH,PomerantzM,TahaH(2001)Coolsurfacesandshadetrees
Energy70:295–310
AlbertiM,MarzluffJM(2004)Ecologicalresilienceinurban
ecosystems:linkingurbanpatternstohumanandecological
cosyst7:241–265
AmorimJH,RodriguesV,TavaresR,ValenteJ,BorregoC(2013)
CFDModellingoftheaerodynamiceffectoftreesonurbanair
alEnviron461–462:541–551
ArmsonD,StringerP,EnnosAR(2012)Theeffectoftreeshadeand
ForUrbanGreen11:245–255
BackhausS,WiehlD,BeierkuhnleinC,JentschA,WellsteinC
(2014)Warminganddroughtdonotinfluencethepalatabilityof
offourEuropeanprovenances.
Arthropod-PlantInteract8:329–337
BaeJ,RyuY(2015)Landuseandlandcoverchangesexplainspatial
andtemporalvariationsofthesoilorganiccarbonstocksina
UrbanPlan136:57–67
BaldockKCR,GoddardMA,HicksDM,KuninWE,MitschunasN,
OsgathorpeLM,PottsSG,RobertsonKM,ScottAV,StoneGN,
VaughanIP,MemmottJ(2015)WhereistheUK’spollinator
biodiversity?Theimportanceofurbanareasforflower-visiting
ocBBiolSci282(1803):20142849
BartraJ,MullolJ,delCuvilloA,Da
´
vilaI,FerrerM,Ja
´
ureguiI,
MontoroJ,SastreJ,ValeroA(2007)Airpollutionandallergens.
JInvestigAllergolClinImmunol17:3–8
BenjaminMT,WinerAM(1998)Estimatingtheozone-forming
nviron32:53–68
BhatR,RaiRV,KarimAA(2010)Mycotoxinsinfoodandfeed:
evFoodSciFood
Saf9:57–81
BISYPLAN(2012)TheEuropeanBioenergySystemPlannersweb-
://ed03Jan
2018
BowlerDE,BuyungAL,KnightTM,PullinAS(2010)Urban
greeningtocooltownsandcities:asystematicreviewofthe
UrbanPlan97:147–155
BraakerS,GhazoulJ,ObristMK,MorettiM(2014a)Habitat
connectivityshapesurbanarthropodcommunities:thekeyrole
y95:1010–1021
BraakerS,MorettiM,BoeschR,GhazoulJ,ObristMK,BontadinaF
(2014b)Assessinghabitatconnectivityforground-dwelling
pl24:1583–1595
BriberBM,HutyraLR,DunnAL,RacitiSM,MungerJW(2013)
VariationsinatmosphericCO
2
mixingratiosacrossaBoston,
2:304–327
Bro
¨
deP,FialaD,Błaz
_
ejczykK,Holme
´
rI,JendritzkyG,Kampmann
B,TinzB,HavenithG(2012)Derivingtheoperational
procedurefortheuniversalthermalclimateindex(UTCI).IntJ
Biometeorol56:481–494
Bu
¨
tlerR,LachatT,LarrieuL,PailletY(2013)Habitattrees:key
:KrausD,KrummF(eds)
Focus—managingforestinEurope,integrativeapproachesasan
an
ForestInstitute,Joensuu,pp84–91
CABE(2010)Urbangreennation:
CommissionforArchitectureandtheBuiltEnvironment,
London,p56
CadotteMW,YasuiSLE,LivingstoneS,MacIvorJS(2017)Are
urbansystemsbeneficial,detrimental,orindifferentforbiolog-
icalinvasion?BiolInvasions19:3489–3503
CalfapietraC,FaresS,LoretoF(2009)Volatileorganiccompounds
n
Pollut157:1478–1486
CalfapietraC,FaresS,ManesF,MoraniSgrignaG,LoretoF(2013)
Roleofbiogenicvolatileorganiccompounds(BVOC)emitted
byurbantreesonozoneconcentrationincities:areview.
EnvironPollut183:71–80
CalfapietraC,NiinemetsU
¨
,Pen
˜
uelasJ(2015)Urbanplantphysiol-
ogy:adaptation-mitigationstrategiesunderpermanentstress.
TrendsPlantSci20:72–75
CardinaleBJ,DuffyJE,GonzalezA,HooperDU,PerringsC,Venail
P,NarwaniA,MaceGM,TilmanD,WardleDA,KinzigAP,
DailyGC,LoreauM,GraceJB,LarigauderieA,SrivastavaDS,
NaeemS(2012)Biodiversitylossanditsimpactonhumanity.
Nature486:59–67
Carin
˜
anosP,Casares-PorcelM,Dı
´
azValle,delaGuardiaA,Dela
CruzMa
´
rquezR,Dı
´
azdelaGuardiaC(2016)Chartingtrendsin
theevolutionoftheLaAlhambraforest(Granada,Spain)
Change135:453–466
Celesti-GrapowL,PysekP,JarosikV,BlasiC(2006)Determinants
ofnativeandalienspeciesrichnessintheurbanfloraofRome.
DiversDistrib12:490–501
CescattiA,NiinemetsU
¨
(2004)landscape.
In:SmithWK,VogelmannTC,ChritchleyC(eds)Photosyn-
icalstudies
er,Berlin,pp42–85
ChenJ,ZhuL,FanP,TianL,LafortezzaR(2016)Dogreenspaces
affectthespatiotemporalchangesofPM
2.5
inNanjing?Ecol
Process5:1–13
CieslikS,PaolettiE,OmasaK(2009)Whyandhowterrestrialplants
exchangegaseswithair:iol11:24–34
ClavelJ,JulliardR,DevictorV(2011)Worldwidedeclineof
specialistspecies:towardaglobalfunctionalhomogenization?
FrontEcolEnviron9:222–228
CohenP,PotchterO,MatzarakisA(2012)Dailyandseasonal
climaticconditionsofgreenurbanopenspacesintheMediter-
Environ51:285–295
ColdingJ(2007)‘Ecologicalland-usecomplementation’forbuilding
UrbanPlan81:46–55
ColdingJ,BarthelS(2013)Thepotentialof‘UrbanGreenCommons’
on86:156–166
123
1992
CrociS,ButetA,GeorgesA,AguejdadR,ClergeauP(2008)Small
urbanwoodlandsasbiodiversityconservationhotspot:amulti-
Ecol23:1171–1186
CzechB,KrausmanPR,DeversPK(2000)Economicassociations
amongcausesofspeciesendangermentintheUnitedStates.
Bioscience50:593–601
DavidsonCM,UrquhartGJ,Ajmone-MarsanF,BiasioliM,DaCosta
DuarteA,Dı
´
az-BarrientosE,Grc
ˇ
manH,HossackI,Hursthouse
AS,MadridL,RodriguesS,ZupanM(2006)Fractionationof
potentiallytoxicelementsinurbansoilsfromfiveEuropean
citiesbymeansofaharmonisedsequentialextractionprocedure.
AnalChimActa565:63–72
DeGrootRS,WilsonM,BoumansR(2002)Atypologyforthe
description,classificationandvaluationofecosystemfunctions,
on41:393–408
deRichterDB,JenkinsDH,KarakashJT,KnightJ,McCreeryLR,
NemestothyKP(2009)e
323:1432–1433
DECC,DepartmentofEnergyandClimateChange(2012)UK
BioenergyStrategy,
DimoudiA,NikolopoulouM(2013)Vegetationintheurban
environment:microclimaticanalysisandbenefiBuild
35:69–76
DisneyM(2015)Remotesensingofvegetation:potentials,limita-
tions,:HikosakaK,Anten
NPR,NiinemetsU
¨
(eds)Canopyphotosynthesis:frombasicsto
esinphotosynthesisandrespiration,vol42.
Springer,Berlin,pp283–331
DjomoSN,AcA,ZenoneT,DeGrooteT,BerganteS,FacciottoG,
SixtoH,CiriaCiriaP,WegerJ,CeulemansR(2015)Energy
performancesofintensiveandextensiveshortrotationcropping
ustain
EnergyRev41:845–854
DobbsC,EscobedoFJ,ZippererWC(2011)Aframeworkfor
developingurbanforestecosystemservicesandgoodsindicators.
LandscUrbanPlan99:196–206
DzierzanowskiK,GawronskiSW(2011)Useoftreesforreducing
odTechnol2:69–73
anFederationofAllergyandAirwayDiseasesPatients
Association(2011)Respiratoryallergies—raiseawareness,
:ValovirtaE(ed).Brussels,Belgium,p59
ElmqvistT,FolkeC,NystromM,PetersonG,BengtssonJ,WalkerB,
NorbergJ(2003)Responsediversity,ecosystemchange,and
colEnviron1:488–494
EscobedoFJ,KroegerT,WagnerJE(2011)Urbanforestsand
pollutionmitigation:analyzingecosystemservicesanddisser-
nPollut159:2078–2087
EuropeanEnvironmentAgency(2015)AirqualityinEurope—2015
No5/2015
EuropeanEnvironmentAgency,lityinEurope-2018
12/ationsOfficeoftheEuropeanUnion.
978-92-9213-989-6
FaresS,McKayM,HolzingerR,GoldsteinAH(2010)Ozonefluxes
inaPinusponderosaecosystemaredominatedbynon-stomatal
processes:evidencefromlong-termcontinuousmeasurements.
AgricForMeteorol150:420–431
FinertyGE,deBelloF,BilaK,BergMP,DiasATC,PezzattiGB,
MorettiM(2016)Exoticornot,leaftraitdissimilaritymodulates
theeffectofdominantspeciesonmixedlitterdecomposition.
JEcol104:1400–1409
FischerJ,LindenmayerDB(2007)Landscapemodificationand
habitatfragmentation:olBiogeogr
16:265–280
ForsbergB,Bra
˚
ba
¨
ckL,KeuneH,KobernusM,vonKraussMK,
YangA,BartonovaA(2012)Anexpertassessmentonclimate
123
detal.
changeandhealth—withaEuropeanfocusonlungsand
nHealth11:S4
FrehnerM,WasserB,SchwitterR(2005)Nachhaltigkeitund
tungfu
¨
rPflegemassnah-
meninWa
¨
amtfu
¨
rUmwelt.
WaldundLandschaft,Bern
FreyD,VegaK,ZellwegerF,GhazoulJ,HansenD,MorettiM
(2018)Predationriskshapedbyhabitatandlandscapecomplex-
col55:2343–2353
FuZH,HuyanJQ,LiF,SongYS,ZhaoD,LiH(2015)Impactsof
EcolSin33(18):5500–5508
GalloEL,LohseKA,BrooksPD,McintoshJC,MeixnerT,Mclain
JET(2012)Quantifyingtheeffectsofstreamchannelsonstorm
l
470–471:98–110
GiannicoV,LafortezzaR,JohnR,SanesiG,PesolaL,ChenJ(2016)
Estimatingstandvolumeandabove-groundbiomassofurban
Glu
¨
ckP,Avdibegovic
´
M,C
ˇ
Sens8:1–14
abaravdic
´
A,Nonic
´
D,Petrovic
´
N,
PosavecS,StojanovskaM(2010)Thepreconditionsforthe
formationofprivateforestowners’interestassociationsinthe
icyEcon12:250–263
Go
´
mez-BaggethunE,BartonDN(2013)Classifyingandvaluing
on86:235–245
GrayER,vanHeezikY(2016)Exotictreescansustainnativebirdsin
cosyst19:315–329
GrimmNB,FaethSH,GolubiewskiNE,RedmanCL,WuJG,Bai
XM,BriggsJM(2008)Globalchangeandtheecologyofcities.
Science319:756–760
GromkeC,BlockenB(2015)Influenceofavenue-treesonairquality
:trafficpollutant
concentrationsatpedestrianlevel.
GroteR,MonsonRK,NiinemetsU
¨
EnvironPollut196:176–184
(2013)Leaf-levelmodelsof
constitutiveandstress-driven
:NiinemetsU
¨
volatileorganiccompoundemis-
,MonsonRK(eds)Biology,controlsand
modelsoftreevolatileorganiccompoundemissions,
er,Berlin,pp315–355
GroteR,SamsonR,AlonsoA,AmorimJU,CalfapietraC,Carin
˜
anos
P,ChurkinaG,FaresS,LeThiecD,NiinemetsU,Mikkelsen
TN,PaolettiE,TiwaryA(2016)Functionaltraitsofurbantrees
inrelationtotheirairpollutionmitigationpotential:aholistic
colEnviron14:543–550
GuoZ,XiaoX,LiD(2000)Anassessmentofecosystemservices:
waterfl
Appl10:925–936
HaaseD,LarondelleN,AnderssonE,ArtmannM,BorgstromS,
BreusteJ,Gomez-BaggethunE,GrenA,HamsteadZ,HansenR,
KabischN,KremerP,LangemeyerJ,RallEL,McPhearsonT,
PauleitS,QureshiS,SchwarzN,VoigtA,WursterD,Elmqvist
T(2014)Aquantitativereviewofurbanecosystemservice
assessments:concepts,models,
43:413–433
HamdouchA,DepretMH(2010)Policyintegrationstrategyandthe
developmentofthe‘greeneconomy’:foundationsandimple-
onPlanManag53:473–490
HandleyK,Hough-GoldsteinJ,HanksLM,MillarJG,D’AmicoV
(2015)Speciesrichnessandphenologyofcerambycidbeetlesin
omolSoc
Am108:251–262
HansenR,PauleitS(2014)Frommultifunctionalitytomultiple
ecosystemservices?aconceptualframeworkformultifunction-
43:516–529
HarrisonT,WinfreeR(2015)Urbandriversofplant-pollinator
col29:879–888
Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1993
HingeV,TidkeJ,DasB,BhuteS,ParabP,ApteK(2017)Air
pollutionexacerbateseffectofallergenicpollenproteinsof
Cassiasiamea:56:147–154
HooperDU,ChapinFS,EwelJJ,HectorA,InchaustiP,LavorelS,
LawtonJH,LodgeDM,LoreauM,NaeemS,SchmidB,Setala
H,SymstadAJ,VandermeerJ,WardleDA(2005)Effectsof
biodiversityonecosystemfunctioning:aconsensusofcurrent
nogr75:3–35
IkinK,LeRouxDS,RaynerL,VillasenorNR,EylesK,GibbonsP,
ManningAD,LindenmayerDB(2015)Keylessonsforachiev-
nagRestor
16:206–214
IrgaPJ,BurchettMD,TorpyFR(2015)Doesurbanforestryhavea
quantitativeeffectonambientairqualityinanurbanenviron-
ment?AtmosEnviron120:173–181
IsbellF,CalcagnoV,HectorA,ConnollyJ,HarpoleWS,ReichPB,
Scherer-LorenzenM,SchmidB,TilmanD,vanRuijvenJ,
WeigeltA,WilseyBJ,ZavaletaES,LoreauM(2011)Highplant
477:199–202
JimCY,LiuHT(2001)Speciesdiversityofthreemajorurbanforest
typesinGuangzhouCity,lManag146:99–114
KarabourniotisG,LiakopoulosG,NikolopoulosD,BrestaP,
StavroulakiV,SumbeleS(2014)‘‘aving,
e’’:twodilemmaswithsolublephenolicsasa
ci227:21–27
KardelF,WuytsK,MaherBA,SamsonR(2012)Intra-urbanspatial
variationofmagneticparticles:monitoringvialeafsaturation
isothermalremanentmagnetisation(SIRM).AtmosEnviron
55:111–120
KarpA,HanleySJ,TrybushSO,MacalpineW,PeiM,ShieldI
(2011)Geneticimprovementofwillowforbioenergyand
rPlantBiol53:151–165
KleinT,RotenbergE,Cohen-HilalehE,Raz-YaseefN,TatarinovF,
PreislerY,Oge
´
eJ,CohenS,YakirD(2014)Quantifying
transpirablesoilwateranditsrelationstotreewateruse
rology
7:409–419
KlemmW,HeusinkveldBG,LenzholzerS,JacobsMH,VanHoveB
(2015)Psychologicalandphysicalimpactofurbangreenspaces
onoutdoorthermalcomfortduringsummertimeinTheNether-
nviron83:120–128
KnappS,KuhnI,SchweigerO,KlotzS(2008)Challengingurban
speciesdiversity:contrastingphylogeneticpatternsacrossplant
tt11:1054–1064
KnopE(2016)Biotichomogenizationofthreeinsectgroupsdueto
angeBiol22:228–236
Ku
¨
hnI,BrandlR,KlotzS(2004)ThefloraofGermancitiesis
olRes6:749–764
KumarP,ImamB(2013)Footprintsofairpollutionandchanging
TotalEnviron444:85–101
LafortezzaR,ChenJ(2016)Theprovisionofecosystemservicesin
responsetoglobalchange:n
Res147:576–579
Laliberte
´
E,WellsJA,DeClerckF,MetcalfeDJ,CatterallCP,
QueirozC,AubinI,BonserSP,DingY,FraterrigoJM,
McNamaraS,MorganJW,MerlosDS,VeskPA,Mayfield
MM(2010)Land-useintensificationreducesfunctionalredun-
tt
13:76–86
LambinEF,MeyfroidtP(2011)Globallandusechange,economic
globalization,tlAcadSci
108:3465–3472
LaPointS,BalkenholN,HaleJ,SadlerJ,vanderReeR(2015)
col
29:868–878
LarcherW(1995)Physiologicalplantecology,er,
Berlin,p506
LavorelS,StorkeyJ,BardgettRD,deBelloF,BergMP,LeRouxX,
MorettiM,MulderC,PakemanRJ,DiazS,HarringtonR(2013)
Anovelframeworkforlinkingfunctionaldiversityofplantswith
othertrophiclevelsforthequantificationofecosystemservices.
JVegSci24:942–948
LePapeP,AyraultS,QuantinC(2012)Traceelementbehaviorand
partitionversusurbanizationgradientinanurbanriver(Orge
River,France).JHydrol472–473:99–110
LeRouxDS,IkinK,LindenmayerDB,ManningAD,GibbonsP
(2014)
ONE9(6)::///10.1371/.0099403
LeeR(1980)iaUniversityPress,New
York
LehvavirtaS,RitaH(2002)Naturalregenerationoftreesinurban
i13:57–66
LeiboldMA,HolyoakM,MouquetN,AmarasekareP,ChaseJM,
HoopesMF,HoltRD,ShurinJB,LawR,TilmanD,LoreauM,
GonzalezA(2004)Themetacommunityconcept:aframework
tt7:601–613
LelieveldJ,DentenerFJ(2000)Whatcontrolstroposphericozone?
JGeophysResAtmos105:3531–3551
LepczykCA,AronsonMFJ,EvansKL,GoddardMA,LermanSB,
MacivorJS(2017)Biodiversityinthecity:fundamental
questionsforunderstandingtheecologyofurbangreenspaces
ence67:799–807
LiW,WangF,BellS(2007)Simulatingtheshelteringeffectsof
ngInd
Aerodyn95:533–549
LiS,TosensS,HarleyPC,
JaametsK,NiinemetsU
¨
JiangY,KanagendranA,GrosbergM,
(2018)Glandulartrichomesasabarrier
againstatmosphericoxidativestress:relationshipswithozone
uptake,leafdamage,andemissionofLOXproductsacrossa
ellEnviron41:1263–1277
LimMT,PhanA,RoddyD,HarveyA(2015)Technologiesfor
measurementandmitigationofparticulateemissionsfrom
domesticcombustionofbiomass:ustain
EnergyRev49:574–584
LindbergF,HolmerB,ThorssonS,RaynerD(2014)Characteristics
ofthemeanradianttemperatureinhighlatitudecities-
Biometeorol58:613–627
Llausa
`
sA,RoeM(2012)Greeninfrastructureplanning:cross-
nationalanalysisbetweentheNorthEastofEngland(UK)and
Catalonia(Spain).EurPlanStud20:641–663
LlorensP,DomingoF(2007)Rainfallpartitioningbyvegetation
wofstudiesinEurope.
JHidrol335:37–54
LoGulloMA,SalleoS(1988)Differentstrategiesofdrought
resistanceinthreeMediterraneansclerophylloustreesgrowingin
tol108:267–276
MadureiraH,AndresenT(2014)Planningformultifunctionalurban
greeninfrastructures:esInt
19:38–49
MaesJ,LiqueteC,TellerA,ErhardM,ParacchiniML,BarredoJ,
GrizzettiB,CardosoA,SommaF,PetersenJE,MeinerA,Royo
GelabertE,ZalN,KristensenP,Bastrup-BirkA,BialaK,
PiroddiC,EgohB,DegeorgesP,FiorinaC,Santos-Martı
´
nF,
ˇ
sevic
ˇ
iusVN,VerbovenJ,PereiraEM,BengtssonJ,GochevaK,
PedrosoCM,Sna
¨
llT,EstreguilC,San-Miguel-AyanzJ,Pe
´
rez-
SobaM,Gre
ˆ
t-RegameyA,LillebøA,MalakDA,Conde
´
S,
MoenJ,Czu
´
czB,DrakouEG,LavalleC,ZulianG(2016)An
123
1994
indicatorframeworkforassessingecosystemservicesinsupport
tServ17:14–23
MarianiL,ParisiSG,ColaG,LafortezzaR,ColangeloG,SanesiG
(2016)Climatologicalanalysisofthemitigatingeffectof
vegetationontheurbanheatislandofMilan,al
Environ569:762–773
MatzarakisA,MayerH,IziomonMG(1999)Applicationsofa
universalthermalindex:physiologicalequivalenttemperature.
IntJBiometeorol43:76–84
McAfeeBJ,NealisVG,MalouinC(2006)Invasivealienspeciesat
nments34:85–88
McDonaldAG,BealeyWJ,FowlerD,DragositsU,SkibaU,Smith
RI,DonovanRG,BrettHE,HewittCN,NemitzE(2007)
Quantifyingtheeffectofurbantreeplantingonconcentrations
anddepositionsofPM
10
Environ41:8455–8467
McElhinnyC,GibbonsP,BrackC,BauhusJ(2006)Fauna–habitat
relationships:abasisforidentifyingkeystandstructural
attributesintemperateAustralianeucalyptforestsandwood-
vBiol12:89–110
McKinneyML(2002)Urbanization,biodiversity,andconservation.
Bioscience52:883–890
McKinneyML(2006)Urbanizationasamajorcauseofbiotic
ns127:247–260
McLainRJ,MacFarlandK,BrodyL,HebertJ,HurleyP,PoeM,
ButtolphLP,GabrielN,DzunaM,EmeryMR,CharnleyS
(2012)Gatheringinthecity:anannotatedbibliographyand
reviewoftheliteratureabouthuman-plantinteractionsinurban
ecosystems,lTechnicalReportsPNW-GTR-849.
Portland,OR:mentofAgriculture,ForestService,
PacificNorthwestResearchStation
MEA,MillenniumEcosystemAssessment(2005)Ecosystemsand
Press,
Washington,DC,p281
MillsG,CleughH,EmmanuelR,EndlicherW,ErellE,McGranahan
G,NgE,NicksonA,RosenthalJ,SteemerK(2010)Climate
informationforimprovedplanningandmanagementofmega
cities(needsperspective).ProcediaEnvironSci1:228–246
MoriJ,SæbøA,HanslinHM,TeaniA,FerriniF,FiniA,BurchiG
(2015)Depositionoftraffic-relatedairpollutantsonleavesofsix
evergreenshrubspeciesduringaMediterraneansummerseason.
Urban
NiinemetsU
¨
ForUrbanGreen14:264–273
(2015)Within-canopyvariationsinfunctionalleaftraits:
structural,chemicalandecologicalcontrolsanddiversityof
:HikosakaK,AntenNPR,NiinemetsU
¨
(eds)
Canopyphotosynthesis:esin
photosynthesisandrespiration,er,Berlin,
pp101–141
NiinemetsU
¨
,KuhnU,HarleyPC,StaudtM,ArnethA,CescattiA,
CiccioliP,CopoloviciL,GeronC,GuentherAB,KesselmeierJ,
LerdauMT,MonsonRK,Pen
˜
uelasJ(2011)Estimationsof
isoprenoidemissioncapacityfromenclosurestudies:measure-
ments,dataprocessing,qualityandstandardizedmeasurement
protocols.
NiinemetsU
¨
Biogeosciences8:2209–2246
,FaresS,HarleyP,JardineKJ(2014)Bidirectional
exchangeofbiogenicvolatileswithvegetation:emission
sources,reactions,ellEnviron
37:1790–1809
NobisMP,JaegerJAG,ZimmermannNE(2009)Neophytespecies
richnessatthelandscapescaleunderurbansprawlandclimate
Distrib15:928–939
NowakDJ(2006)Institutionalizingurbanforestryasa‘‘biotechnol-
ogy’’orUrbanGreen
5:93–100
NowakDJ,CraneDE(2002)Carbonstorageandsequestrationby
nPollut116:381–389
123
detal.
NowakDJ,StevensJC,SisinniSM,LuleyCJ(2002)Effectsofurban
treemanagementandspeciesselectiononatmosphericcarbon
ic28:113–122
NowakDJ,CraneDE,StevensJC(2006)Airpollutionremovalby
orUrban
Green4:115–123
NowakD,JovanS,BranquinhoC,AugustoS,RibeiroMC,Kretsch
CE(2015)Biodiversity,:
tingGlobalPriorities-Biodiversityand
HumanHealth:ealth
OrganizationandSecretariatoftheConventiononBiological
Diversity,Chapter4,p63–9789241508537
NowakDJ,HirabayashiS,DoyleM,McGovernM,PasherJ(2018)
AirpollutionremovalbyurbanforestsinCanadaanditseffect
orUrbanGreen
29:40–48
OishiY,TabataK(2015)Theimportanceoflargetreesinshrine
forestsfortheconservationofepiphyticbryophytesinurban
:LoY-H,BlancoJA,RoyS(eds)Biodiversityin
ecosystems—Open,Lon-
don,UK,ISBN978-953-51-2028-5
OkeTR(1982)
MeteorolSoc108(455):1–24
OlofssonM,Ek-OlaussonB,JensenNO,LangerS,Ljungstro
¨
mE
(2005)Thefluxofisoprenefromawillowcoppiceplantation
nviron39:2061–2070
OwenSM,HewittCN,RowlandCS(2013)Scalingemissionsfrom
:NiinemetsU
¨
,
MonsonRK(eds)Biology,controlsandmodelsoftreevolatile
er,Hei-
delberg,pp415–450
PalahiM,MavsarR,GraciaC,BirotY(2008)Mediterraneanforests
Rev10:676–688
PanditR,PolyakovM,TapsuwanS,MoranT(2013)Theeffectof
streettreesonpropertyvalueinPerth,
UrbanPlan110:134–142
PaolettiE(2006)ImpactofozoneonMediterraneanforests:areview.
EnvironPollut144:463–474
PaolettiE(2009)nPollut
157:1506–1512
PaolettiE,KarnoskyDF,PercyKE(2004)Urbantreesandair
:KonijnendijkCC,SchipperijnJ,HoyerKK(eds)
Forestryservingurbanisedsocieties,orld
Series,IUFROHeadquarters,Vienna,pp129–154
PascalM,CorsoM,ChanelO,DeclercqC,BadaloniC,CesaroniG,
HenschelS,MeisterK,HaluzaD,Martin-OlmedoP,MedinaS
(2013)Assessingthepublichealthimpactsofurbanairpollution
in25Europeancities:al
Environ449:390–400
PatakiDE,McCarthyHR,LitvakE,PincetlS(2011)Transpirationof
pl
21:661–677
PearlmutterD,BerlinerP,ShavivE(2007)Urbanclimatologyinarid
regions:imatol
27:1875–1885
PesolaL,ChengX,SanesiG,ColangeloG,EliaM,LafortezzaR
(2017)Linkingabovegroundbiomassandbiodiversitytostand
developmentinurbanforestareas:acasestudyinnorthernItaly.
LandscUrbanPlan157:90–97
PinhoP,CorreiaO,LecoqM,MunziS,VasconcelosS,Gonc¸alvesP,
RebeloR,AntunesC,SilvaP,FreitasC,LopesN,Santos-Reis
M,BranquinhoC(2016)Evaluatinggreeninfrastructurein
urbanenvironmentsusingamulti-taxaandfunctionaldiversity
nRes147:601–610
PopekR,Gawron
´
skaH,WrochnaM,Gawron
´
skiSW,SæbøA(2013)
Particulatematteronfoliageof13woodyspecies:depositionon
Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1995
surfacesandphytostabilisationinwaxes–
Phytorem15:245–256
PuppimdeOliveiraJA,DollCNH,Moreno-Pen
˜
arandaR,BalabanO
(2014)environ-
er,Dordrecht,pp461–468
Pys
ˇ
ekP(1998)AlienandnativespeciesinCentralEuropeanurban
floras:ogr25:155–163
RenY,GeY,GuB,MinY,TaniA,ChangJ(2014)Roleof
managementstrategiesandenvironmentalfactorsindetermining
theemissionsofbiogenicvolatileorganiccompoundsfrom
nSciTechnol48:6237–6246
RosenfeldAH,RommJJ,AkbariH,PomerantzM(1998)Cool
communities:strategiesforheatislandmitigationandsmog
Build28:51–62
RoyS,ByrneJ,PickeringC(2012)Asystematicquantitativereview
ofurbantreebenefits,costs,andassessmentmethodsacross
orUrbanGreen
11:351–363
SaaroniH,AmorimJH,HiemstraJA,PearlmutterD(2018)Urban
GreenInfrastructureasatoolforurbanheatmitigation:survey
ofresearchmethodologiesandfindingsacrossdifferentclimatic
lim24:94–110
SadanandanKR,RheindtFE(2015)Geneticdiversityofatropical
rainforestunderstorybirdinanurbanfragmentedlandscape.
Condor117:447–459
SalmondJA,WilliamsDE,LaingG,KinghamS,DirksK,LongleyI,
HenshawGS(2013)Theinfluenceofvegetationonthe
horizontalandverticaldistributionofpollutantsinastreet
alEnviron443:287–298
SattlerT,BorcardD,ArlettazR,BontadinaF,LegendreP,Obrist
MK,MorettiM(2010)Spider,bee,andbirdcommunitiesin
citiesareshapedbyenvironmentalcontrolandhighstochastic-
y91:3343–3353
SattlerT,ObristMK,DuelliP,MorettiM(2011)Urbanarthropod
communities:addedvalueorjustablendofsurrounding
biodiversity?LandscUrbanPlan103:347–361
SeidelD,BuschG,KrauseB,BadeC,FesselC,KleinnC(2015)
Quantificationofbiomassproductionpotentialsfromtrees
outsideforests—rgy
Res8:1344–1351
Shashua-BarL,PearlmutterD,ErellE(2011)Theinfluenceoftrees
andgrassonoutdoorthermalcomfortinahot-aridenvironment.
IntJClimatol31:1498–1506
ShwartzA,Turbe
´
A,SimonL,JulliardR(2014)Enhancingurban
biodiversityanditsinfluenceoncity-dwellers:anexperiment.
BiolConserv171:82–90
SicardP,AugustaitisA,BelyazidS,CalfapietraC,DeMarcoA,Fenn
M,GrulkeN,HeS,MatyssekR,SerengilY,WieserG,Paoletti
E(2016)Globaltopicsandnovelapproachesinthestudyofair
pollution,nPollut
213:977–987
SicardP,AgathokleousE,AraminieneV,CarrariE,HoshikaY,De
MarcoA,PaolettiE(2018)Shouldweseeurbantreesas
effectivesolutionstoreduceincreasingozonelevelsincities?
EnvironPollut243:163–176
SpeightMCD(1989)Saproxylicinvertebratesandtheirconservation.
CouncilofEurope,Natureandenvironmentseries42,pp1–81.
Strasbourg
StottI,SogaM,IngerR,GastonKJ(2015)Landsparingiscrucialfor
colEnviron13:387–393
SuscaT,GaffinSR,Dell’OssoGR(2011)Positiveeffectsof
vegetation:nPollut
159:2119–2126
TassickerA,KuttA,VanderduysEMS(2006)Theeffectsof
vegetationstructureonthebirdsinatropicalsavannawoodland
J28:139–152
TaylorPD,FahrigL,WithKA(2006)Landscapeconnectivity:a
:CrooksKR,SanjayanM(eds)
dgeUniversityPress,New
York,pp29–43
TEEB,TheEconomicsofEcosystemsandBiodiversity(2010)The
economicsofecosystemsandbiodiversity:ecologicaland
can,London
TerhoM,HallakselaAM(2008)Decaycharacteristicsofhazardous
Tilia,Betula,andAcertreesfelledbymunicipalurbantree
ry81:151–159
TerzaghiE,WildE,ZachelloG,CeraboliniBEL,JonesKC,Di
GuardaA(2013)Forestfilterseffects:roleofleavesin
capturing/releasingairparticulatematteranditsassociated
nviron74:378–384
ThorntonPE,LawBE,GholzHL,ClarkKL,FalgeE,EllsworthDS,
GoldsteinAH,MonsonRK,HollingerD,FalkM,ChenJ,Sparks
JP(2002)Modelingandmeasuringtheeffectsofdisturbance
historyandclimateoncarbonandwaterbudgetsinevergreen
orMeteorol113:185–222
TicktinT,ShackletonC(2011)Harvestingnon-timberforestproducts
sustainably:-timberforest
er,BerlinHeidelberg,
pp149–169
TiwaryA,KumarP(2014)Impactevaluationofgreen–grey
infrastructureinteractiononbuilt-spaceintegrity:anemerging
alEnviron
487:350–360
TiwaryA,WilliamsID,HeidrichO,NamdeoA,BandaruV,
CalfapietraC(2016)Developmentofmulti-functionalstreets-
capegreeninfrastructureusingaperformanceindexapproach.
EnvironPollut208:209–220
TreschS,FreyD,LeBayonRC,ZanettaA,RascheF,FliessbachA,
MorettiM(2019)Litterdecompositiondrivenbysoilfaunaand
alEnviron
658:1614–1629
TurriniT,KnopE(2015)Alandscapeecologyapproachidentifies
angeBiol
21:1652–1667
UnitedNations(2018)Worldurbanizationprospects:the2018
:///
wup/Publications/Files/ed17
Oct2018
VandekerkhoveK,ThomaesAB,JonssonG(2013)Connectivityand
fragmentation:islandbiogeographyandmetapopulationapplied
:KrausD,KrummF(eds)Integrative
approachesasanopportunityfortheconservationofforest
anForestInstitute,Freiburg
VergnesA,ViolIL,ClergeauP(2012)Greencorridorsinurban
landscapesaffectthearthropodcommunitiesofdomestic
nserv145:171–178
Vidal-BeaudetL,Forget-CaubelV,GrosbelletC(2015)Favourstreet
treerootgrowthwithhighsuppliesoforganicmatterinduces
rt1099:943–950
VilharU,Simonc
ˇ
ic
ˇ
P(2013)Identificationofkeyindicatorsfor
drinkingwaterprotectionservicesintheurbanforestsof
-eastEurFor3:103–113
VosPEJ,MaiheuB,VankerkomJ,JanssenS(2013)Improvinglocal
airqualityincities:totreeornottotree?EnvironPollut
183:113–122
Vuletic
´
D,PosavecS,KrajterS,Paladinic
´
E(2010)Paymentsfor
environmentalservices(PES)inCroatia–publicandprofes-
-eastEurFor
1:51–98
WangWJ,ZhangB,XiaoL,ZhouW,WangHM,HeXY(2018)
Decouplingforestcharacteristicsandbackgroundconditionsto
123
1996
explainurban-ruralvariationsofmultiplemicroclimateregula-
6:e5450
WoodburyPB,SmithJE,HeathLS(2007)Carbonsequestrationin
lManag
241:14–27
WrightIJ,ReichPB,WestobyM,AckerlyDD,BaruchZ,BongersF,
Cavender-BaresJ,ChapinT,CornelissenJHC,DiemerM,
FlexasJ,GarnierE,GroomPK,GuliasJ,HikosakaK,Lamont
BB,LeeT,LeeW,LuskC,MidgleyJJ,NavasML,Niinemets
¨
,OleksynJ,OsadaN,PoorterH,PootP,PriorL,PyankovVI,U
RoumetC,ThomasSC,TjoelkerMG,VeneklaasE,VillarR
(2004)
428:821–827
WuJ,LiN,ChenZ,YuS(2010)TheeffectofCO
2
sequestrationand
O
2
releaseofurbanvegetationinShenzhenspecialzone.
detal.
ZhongshanDaxueXuebao/ActaScientiarumNatraliumUniver-
sitatisSunyatseni49:86–92
ZielloC,SparksTH,EstrellaN,BelmonteJ,BergmannKC,Bucher
´
nC,GehrigR,E,BrighettiMA,DamialisA,DetandtM,Gala
´
rrezBustilloAM,Hallsdo
´
ttirM,Kockhans-GrewlingL,Gutie
`
ldyA,Sa
´
nchezA,BiedaMC,DeLinaresC,MyszkowskaD,Pa
SmithM,ThibaudonM,TravagliniA,UruskaA,Valencia-
BarreraRM,VokouD,WachterR,deWegerLA,MenzelA
(2012)
One7:1–8
Publisher’sNoteSpringerNatureremainsneutralwithregardto
jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
123
发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1714078357a2376774.html
评论列表(0条)