Towards an integrative approach to evaluate the environmental ecosyst

Towards an integrative approach to evaluate the environmental ecosyst


2024年4月26日发(作者:数据恢复精灵破解版)

.(2019)30(6):1981–1996

/10.1007/s11676-019-00916-x

REVIEWARTICLE

Towardsanintegrativeapproachtoevaluatetheenvironmental

ecosystemservicesprovidedbyurbanforest

SamsonRoeland

1

MarcoMoretti

2

JorgeHumbertoAmorim

3

CristinaBranquinho

4

¨

loNiinemets

7

ElenaPaoletti

8

SilvanoFares

5

FedericoMorelli

6

U

PedroPinho

4,9

GregorioSgrigna

10

VladimirStojanovski

11

AbhishekTiwary

12

PierreSicard

13

CarloCalfapietra

10,14

Received:3November2018/Accepted:15January2019/Publishedonline:22March2019

ÓTheAuthor(s)2019

AbstractAsaNature-BasedSolution,urbanforestsdeli-

veranumberofenvironmentalecosystemservices(EESs).

ToquantifytheseEESs,well-defined,reliable,quantifiable

teratureanalysis

andexpertknowledgegatheredwithinCOSTAction

FP1204GreenInUrbs,weproposedaclassificationofurban

forestEESsintothreecategories:(A)regulationofair,

water,soilandclimate;(B)provisioningofhabitatquality;

and(C)

categoryisdividedintoEEStypes:(a)ameliorationofair

quality;restorationofsoilandwater;ameliorationofthe

microclimate;removalofCO

2

fromtheair;(b)provision

ofhabitatforbiodiversity;supportforresilienturban

ecosystems;provisionofgeneticdiversity;and(c)provi-

sionofenergyandnutrients;provisionofgreyinfrastruc-

Stypeprovidesoneormore

benefihofthese12benefits,weproposeasetof

indicatorstobeusedwhenanalyzingtheimpactsonthe

identifihalfofthe36indicatorsarerel-

evanttomorethanonesinglebenefit,whichhighlights

icatorsofwiderappli-

cabilityaretreeandstandcharacteristics,followedbyleaf

owl-

edgeisneededfortheoptimizationoftheEESsdelivered

byurbanforests,nowandinthefuture.

KeywordsUrbanforestsÁEnvironmentalecosystem

servicesÁIndicators

Projectfunding:TheworkwasfinanciallysupportedbyCOSTAction

FP1204GreenInUrbs,PRINprojectEUFORICC,andMinistryof

EducationandScienceoftheRussianFederation(theAgreementNo.

02.A03.21.0008).

Theonlineversionisavailableat

Correspondingeditor:YuLei.

&ElenaPaoletti

ti@

1

5

CouncilforAgriculturalResearchandEconomics(CREA),

ResearchCenterforForestryandWood,Arezzo,Italy

DepartmentofAppliedGeoinformaticsandSpatialPlanning,

FacultyofEnvironmentalSciences,CzechUniversityofLife

´

129,16500Prague6,Czech

´

ckaSciencesPrague,Kamy

Republic

InstituteofAgriculturalandEnvironmentalSciences,

EstonianUniversityofLifeSciences,Kreutzwaldi1,

Tartu51014,Estonia

InstituteofResearchonTerrestrialEcosystems(IRET),

CNR,SectionofFlorence,ViaMadonnadelPiano10,

SestoFiorentino,Italy

CentreforNaturalResourcesandtheEnvironment,Instituto

´

cnico,UniversityofLisbon,Lisbon1749-016,SuperiorTe

Portugal

6

DepartmentofBioscienceEngineering,ResearchGroup

EnvironmentalEcologyandAppliedMicrobiology,

LaboratoryofEnvironmentalandUrbanEcology,University

ofAntwerp,Antwerp,Belgium

SwissFederalResearchInstituteWSL,Biodiversityand

¨

rcherstrasse111,ConservationBiology,Zu

8903Birmensdorf,Switzerland

SwedishMeteorologicalandHydrologicalInstitute(SMHI),

¨

ping,SwedenSE-60176Norrko

ˆ

ncias,cE3c-CentreforEcology,EvolutionFaculdadedeCie

andEnvironmentalChanges,UniversidadedeLisboa,Campo

Grande,Lisbon1749-016,Portugal

7

2

8

3

4

9

123

1982

Introduction

Urbanareasareprojectedtoaccommodate68%ofthe

world’spopulationby2050(UnitedNations2018).Urban

forests(includingindividualtreesandshrubs,parksand

forests)playacrucialroleinimprovingtheenvironmental

qualityofcitiesandurbandwellers(Royetal.2012;

Shwartzetal.2014).Conventionalurbangreeningman-

agementprimarilyaimsatenhancingamenityvalues

(Panditetal.2013)andmaintainingbiodiversity(Llausa

`

s

andRoe2012),butgrowinginteresthasbeenfocusingon

carbon(C)managementperspectives(Grimmetal.2008)

andotherenvironmentalecosystemservices(EESs).

Ecosystemservices(ES)aredefinedasbenefitsthat

humansobtainfromecosystemfunctions(DeGrootetal.

2002),orasdirectandindirectcontributionsfrom

ecosystemstohumanwell-being(TEEB2010).ManyES

typeshavebeenidentifiedandgroupedintothree(provi-

sioning,regulating,andculturalservices,Maesetal.2016)

orfourcategories(theformerthree,plussupportingser-

vices;TEEB2010).Ameta-analysisonurbanESscon-

cludedthatmoststudieswereundertakeninEurope,North

AmericaandChina,andthatalmost50,20,11and15%of

thestudieswereaboutregulating,supporting,provisioning

andculturalESs,respectively(Haaseetal.2014).As

comparedtootherecosystemslikewetlandsornatural

forests,theattentiongiventourbanESsisstillinsufficient

(Go

´

mez-BaggethunandBarton2013),especiallywhenthe

focusisontheurbanforestalone(24%ofstudiesinthe

meta-analysisbyHaaseetal.2014).Intheanalysiscarried

outinthispaperweestablishedthatEESsincludeallESs

sensustricto,excepttheculturalservices(Fig.1).

BecauseEESsarebiodiversity-based,speciescomposi-

tionandcommunitystructureoccurringinurbanforestsare

crucialforthedeliveryofanyEESincities(Cardinale

etal.2012).Air-andclimate-relatedEESscompriseair

purification,climateregulationandCsequestration

(McDonaldetal.2007;Armsonetal.2012;Lafortezzaand

Chen2016).Othergoodsandservicescomprisethe

deliveryofenergy,food,non-timberforestproducts

10

InstituteofResearchonTerrestrialEcosystems(IRET),

CNR,Headquarters,ViaMarconi2,Porano,Italy

11

ForestFacultyinSkopje,UniversitySSCyrilandMethodius,

1000Skopje,Macedonia

12

FacultyofEngineeringandtheEnvironment,Universityof

Southampton,Highfield,SouthamptonSO171BJ,UK

13

ARGANS,260RouteduPinMontard,

06904SophiaAntipolis,France

14

DepartmentofLandscapeDesignandSustainable

Ecosystems,Agrarian-technologicalInstitute,RUDN

University,Miklukho-MaklayaStr.,6,Moscow,Russia

117198

123

detal.

RegulaƟon of AIR, WATER,

SOIL and CLIMATE

Provisionof HABITAT

QUALITY

Provisionof other

GOODS and SERVICES

Fig.1Type,relationshipsandmaindriversoftheenvironmental

ecosystemservices(EESs)ofurbanforests(UF).WeclassifyUF

EESsintothreecategories:(1)regulationofair,water,soiland

climate;(2)provisioningofhabitatquality;and(3)provisioningof

othergoodsandservices,withhabitatqualityascentraltotheother

ndrivers(UFmanagementandclimatechange)affect

allthethreeEESs

(NTFPs),freshandcleanwater,regulationofwaterrunoff

anderosion(Guoetal.2000;Royetal.2012).TheseEESs

actatthelocallevel,etorneighborhoodscale,

butmayalsoexertanimpactattheregionallevel,for

example,inrelationtoclimate-orwater-regulatingeffects

(Guoetal.2000).SeveralurbanforestEESsarecoupledto

ample,wateravailabilitycaninfluence

thecoolingeffectofurbanforests,butcanalsoaffectthe

lutionin

urbanizedareascanresultinpollutedsoils(Davidsonetal.

2006),surfacewaters(LePapeetal.2012)andground-

water(Galloetal.2012).Moreover,thedifferentenvi-

ronmentalconditionsoftenobservedwithintheurban

environmentascomparedtoitssurroundingscanaffectthe

physiologyofplants(Sicardetal.2016)andconsequently

theircapacitytoprovideEESs(Calfapietraetal.2015).

Science-basedevidenceonurbanforestEESsisneededto

identifyandassesstrade-offs,disservices(environmental,

socialandfinancial)andcomplexinteractionsamongdif-

tance,certaintreespecies(s)

mighttakeupgreatamountsofozone,whichisbeneficial

intermsofairquality,butthesamespeciesmightbea

strongemitterofbiogenicvolatileorganiccompounds

(BVOCs)andthuscontributetotheformationofozone

itself(Calfapietraetal.2013).

ToquantifytheurbanforestEESsanduntanglethe

complexinterrelationshipsamongtheminachangingcli-

mateandunderdifferentsocio-culturalconditions,EES

Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1983

indicatorsandtheirbenchmarkdefinitionsshouldbe

identifiindicatorsshouldbewelldefined,

measurable,reliableandstableparametersthataredirectly

orindirectlyrelatedwithoneormoreecosystemprocesses

ntificationandmonitoring

ofindicatorshelptolinkdecisionmakinginurbanplan-

ningandmanagementwithrelevantscientificknowledge

(Maesetal.2016).Suchisthecaseforbiodiversity,where

accountingfortheneedsofmultiplebiologicalgroupsisa

challengethatcanbeaddressedwiththeproperindicators

(Pinhoetal.2016).

Thereisanurgentneedtounderstandthecomplex

relationshipshighlightedabove,inparticularconsidering

theongoingclimaticandsocio-economicalchangesthat

affectworldwideurbanizedareasinanunprecedentedway.

Therefore,theaimofthispaperistoprovideanimproved

classificationofurbanforestEESs,discusstheirbenefits,

specificityandrelevanceinthecontextofotherEESs,and

defirkisanoutcome

oftheactivitiesoftheCOSTActionFP1204‘Green

Infrastructureapproach:linkingenvironmentalwithsocial

aspectsinstudyingandmanagingurbanforests’

(GreenInUrbs).

Theenvironmentalecosystemservicesofurban

forests

ClassificationofurbanforestEESs

WeclassifiedurbanforestEESsintothreemaincategories:

regulationofair,water,soilandclimate;provisioningof

habitatquality;andprovisioningofothergoodsandser-

nbythegreenarrowsinFig.1,habitat

quality,inthebroadersenseofitsdefinition,asthequality

oftheaboveandbelowgroundspacewhereurbantrees

live,iscentralfortheprovisioningofalltheotherEESs,

whileair,water,soilandclimateEESsalsoaffectthe

deliveryofothergoodsandservices(Chenetal.2016;

Giannicoetal.2016;Marianietal.2016;Pesolaetal.

2017).Ahighhabitatqualityofthelivingspaceofurban

treeswillpositivelyaffecttheirgrowth,survivaland

reproduction,enhancingtheirpotentialprovisionofmul-

nbenefitsandinter-

linkagesaresummarizedinFig.2bydifferentcolours.

Fifty-threepercentofthe36indicatorssuggestedhereinare

relevanttomorethanonesinglebenefit,whichhighlights

thecomplexinterrelationshipsamongdifferenturbanforest

icatorsofwiderapplicabilityaretreeand

,densityandcontinuityofthe

plantcover,treeage,architecture,diameteratbreastheight

(DBH),leafareaindex(LAI),canopyheight,treeheight),

followedbyleafphysicaltraits(shape,persistence,

orientation,wettability,hairiness,roughness,toughness,

albedo)andtreespeciescomposition(speciesidentityand

relativeabundance).

eithertheimpactontheenvironmentandthegeneralper-

ceptionbythepopulation,differsalongarural–urban

transect(Fig.3).Ameliorationofairqualityandmicro-

climate,aswellasbuildingpreservation,areofutmost

importanceincitiesgiventhedensityofpopulationand

builtinfrastructures,whileCO

2

sequestration,provisionof

energy,nutrientsandresources,andrestorationofsoiland

waterarequantitativelymoreimportantforforestsinrural

tqualityforbiodiversityisextremelyimpor-

tantinbothurbanandruralforests.

Regulationofair,water,soilandclimate

Byinteractingwiththeatmosphere,urbanforestsprovide

ervicescanbeclassified

intothreemajortypes:(1)ameliorationofairquality;(2)

restorationofwaterandsoil;(3)ameliorationofthe

microclimateandremovalofthegreenhousegas(GHG)

CO

2

fromtheatmosphere(Fig.2).TheseEESsprovidea

numberofbenefitsthataresummarizedas:(1)reductionof

airpollution;(2)soil/waterretention;(3)ameliorationof

thermalcomfort;and(4)carbonsequestration(thenumbers

refertotheindicatorsinFig.2).Foreachbenefit,avariety

indicatorscanbeeithercharacteristicsofindividualtrees

andtreecanopies(writteninlightgreeninFig.2)or

characteristicsoftheenvironmentwherethetreesare

located(inblackinFig.2).

Ameliorationofairquality

Urbanairpollutionisamajorthreattocitizens’health

(Pascaletal.2013).

nitrogenoxides(NO

x

),sulphurdioxide(SO

2

)andpartic-

ulatematter(PM),aredirectlyemittedbycombustionin

industrialprocessesandroadandnon-roadtransport(EEA

2015).Secondarypollutants,(O

3

)andsecondary

organicaerosols(SOA),areformedbyreactionsofpre-

cursorssuchasNO

x

andVOCs(LelieveldandDentener

2000).Amongthemajorairpollutants,PM,nitrogen

dioxide(NO

2

)andground-levelO

3

arestillthemostseri-

ouspollutantsintermsofimpactsonthehealthofEuro-

peanpopulation(EuropeanEnvironmentAgency2018),

andshouldbeprioritiesinurbancontext.

AirpollutionmitigationisarelevantEESprovidedby

urbanforestsduetoairpollutiondepositionandfiltering

(Nowaketal.2006;Escobedoetal.2011).Urbanforests

havebeenarguedtophytoremediatetheairbyremoving

PMandgases(Nowak2006;Groteetal.2016;Sicardetal.

2018).Areaswithhighurbanforestdensity,infact,have

123

detal.

lowerPMthanothersites(Irgaetal.2015).Althoughmost

oftheestimatessuggestquitelowmitigationpotentialsin

termsofatmosphericconcentrations,suchsmallpercent-

agestranslateintosignificantsavingsintermsofhuman

health(Nowaketal.2015,2018).

Urbanforestscanreducetheconcentrationofpollutants

intheatmospherebydirectdepositiononplantsurfaces

andstomataluptakeofgasesinsidetheleaves(Cieslik

etal.2009;Niinemetsetal.2014).Non-stomatalremoval

processesincludephysicaldepositiononanyexternal

surface,andapplytobothgasandparticlephases,although

itisimportanttoconsiderthatgasexchangealwaysoccurs

inabidirectionalmanner(Niinemetsetal.2014).Larger

treecrownshaveagreaterpotentialofamelioratingair

qualitybymaximizingpollutantdeposition(Paolettietal.

2004),eventhoughedgesofshrubsandsmallertreescan

beplantedextremelynearthesourceofpollution(

traffic)andthusalsomaximizepollutantfiltering(Popek

etal.2013;Morietal.2015).Therefore,thecharacteristics

ofthetreecover,inparticulardensityandcontinuityof

crowns,sizeandarchitectureofindividualtreecrowns,and

leafareaperunitgroundsurfacearea(LAI),arerecom-

,leafsurface

characteristics,forexample,cuticularmorphology,leaf

123

Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1985

b

Fig.2Classificationofthethreemainenvironmentalecosystem

services(EESs)providedbyurbanforests(inredintheouterlayer),

theirtypesandbenefits(1–12)(nextlayer),andindicators(wedges).

Interlinksofeachindicatortoabenefitaremarkedbythesame

torsofenvironmentorbiodiversityarewritteninblack.

descriptionofeachindicator:(a)Mainstandcharacteristicsare

density,continuityandage(VilharandSimonc

ˇ

ic

ˇ

2013;Frehneretal.

2005);(b)Maintreecharacteristicsarearchitecture,DBH,LAI,

canopyheight,treeheight(Tiwaryetal.2016;Nowaketal.2002;

ColdingandBarthel2013);(c)mainleafphysicaltraitsareshape,

persistence,orientation,wettability,hairiness,roughness,toughness,

albedo(LlorensandDomingo2007);(d)(Lietal.2007);(e)(Kumar

andImam2013);(f)Useofvapourpressuredeficitrecommended

(TiwaryandKumar2014);(g)(TiwaryandKumar2014);(h)Main

treeplacementcharacteristicsaredistancetoroad,arrangement,

orientation(Amorimetal.2013;Salmondetal.2013;Vosetal.2013;

GromkeandBlocken2015);(i)(Calfapietraetal.2013);

(j)(Carin

˜

anosetal.2016;Zielloetal.2012);(k)(Galloetal.

2012;LePapeetal.2012;TiwaryandKumar2014);(l)(Kleinetal.

2014);(m)(Patakietal.2011);(n)(Pearlmutteretal.2007;Shashua-

Baretal.2011);(o)(Fuetal.2015);(p)orplantcarbonstorage

(BISYPLAN2012);(q)(BaeandRyu2015);(r)includingnumberof

speciesandalphadiversity(Handleyetal.2015;Ikinetal.2015;

OishiandTabata2015);(s)(Knop2016);(t)Mainleafchemicaltraits

arechemistryandpalatability(Backhausetal.2014);(u)Main

speciescompositioncharacteristicsarespeciesidentityandrelative

abundance(Karpetal.2011;Ikinetal.2015;OishiandTabata2015);

(v)(SadanandanandRheindt2015);(w)Maincoarsewoodydebris

,densityofdeadwoodanddecaystages

(LehvavirtaandRita2002;LeRouxetal.2014);(x)Maintree-related

microhabitatscharacteristicsaredensitiesofcavities,cracks,bark

loss,anddeadbranches(LehvavirtaandRita2002;Terhoand

Hallaksela2008;LeRouxetal.2014);(y)Maintopologiesoftrophic

networkinteractionsarediversity,nestedness,andconnectance

(Baldocketal.2015;HarrisonandWinfree2015);(z)Main

functionalredundancycharacteristicsarenumberoffunctionally

redundantspecieswithinaneffectgroup(Elmqvistetal.2003;

Laliberte

´

etal.2010);(a)(Elmqvistetal.2003;Laliberte

´

etal.2010);

(ß)(TurriniandKnop2015);(r)(Braakeretal.2014a;Baldocketal.

2015;HarrisonandWinfree2015);(k)(AIEL2008);(u)(Lambin

andMeyfroidt2011);(w)(Bhatetal.2010);(q)(Lambinand

Meyfroidt2011);(p)(McLainetal.2012);(l)(Ticktinand

Shackleton2011)

wettabilityandhairiness,affectPM(Kardeletal.2012)

andO

3

deposition(Lietal.2018)thusrepresentinga

suitableindicator.

AnotherimportantleaftraitaffectingtheEESairquality

isthepersistenceoffoliagethroughouttheyear(evergreen

species)oronlyduringthegrowingseason(deciduous

species).Stagnantatmosphericconditionscombinedwith

higherprimaryPMemissionsfromresidentialcombustion

,European

EnvironmentAgency2018).Therefore,andwithoutcon-

sideringothereventualeffects,evergreenspeciesarerec-

contrast,gaseouspollutants,andinparticularO

3

,increase

duringthegrowingseason(Paoletti2006,2009);thus,

deciduousspeciesarebettersuitedforfilteringgaseousair

Fig.3Schematicrepresentationofthemaintypesofenvironmental

ecosystemservices(EESs)andhowtheirrelativeimportancechanges

sprovidedbyurbanforestsare

similartothoseprovidedbyforestsinruralareas,whiletherelative

importancedoesdifferexceptforhabitatquality,whichisequally

importantalongtheurban–ruralgradient

pollutantsprovidedtheydonotemitBVOCsoremitthem

atalowrate,asBVOCsfavourtheO

3

formation(Cal-

fapietraetal.2013).Inaddition,deciduousspeciesmay

havehigherstomatalconductancethanevergreenspecies

(Larcher1995)andthusmaximisetheairpollutantuptake

depositiononleafsurfacesmay

beratherlimitedunderdryconditions,whileonwet

wetness,however,isadifficultparametertomeasureand

cannotbeproposedasanindicator,whereasthevapor

pressuredeficitoftheair(VPD)isasimpleparameter

combiningairtemperatureandrelativehumidity(RH)and

canberecommendedasaproxyofleafcapacityforwet

deposition(orreleaseoncetheleavesdryoutandthe

volatilesaregassedout).

Thecapacityoftreestoremovepollutantsmaylargely

differunderstressconditions(Sicardetal.2018).Species

selectionforairpollutionmitigationshouldthusconsider

theabilityofatreespeciestoadapttolocalconditions;for

example,sclerophyllousspeciesadaptbettertowarm

environments(Larcher1995).Awater-savingapproachby

activelycontrollingstomatalconductanceisalsotypicalin

warmclimates(mostcommonlyinevergreenneedle-

leavedspecies),whereasawater-spendingstrategyismore

typicalintemperate/coldregions(indeciduousbroad-

leavedspecies)(LoGulloandSalleo1988;Karabourniotis

etal.2014).

Insideleaves,gaseouspollutantscanbescavengedby

antioxidantenzymes(Niinemetsetal.2014).Although

123

1986

suchscavengingabilityisspecies-specific,extensiveindi-

vidualvariability,broadseasonalityandnumerouscom-

poundsinvolvedinscavengingmaketheassessmentofthis

parameterunsuitableasanindicatoroftheEESairquality.

Non-stomatalremovalprocessesalsoincludechemical

depositionresultingfromgas-phasereactionsbetween

pollutants(mostlyO

3

andNO

x

)andBVOCsemittedfrom

,plantsorsoil)(Faresetal.2010).The

emissionofBVOCsisspecies-specificandislight-and

temperature-dependent(Groteetal.2013;Niinemetsetal.

2011).HighBVOCemittersaretypicallybroadleafplants,

suchasthegenusEucalyptus,PopulusandQuercus,with

thehighestemissionsoccurringduringspringandsummer

(BenjaminandWiner1998;Calfapietraetal.,2009).The

downsideisthatBVOCsthemselvescanpromotehigherair

pollutionduetotheproductionofsecondarypollutants

(Calfapietraetal.2013).AdoptinglowBVOC-emitting

speciesinurbanforestsisthuscrucialfortheEESair

quality(BenjaminandWiner1998;Renetal.2014).In

additiontothespecies-specificBVOCemissionfactor,

however,theamountofemittingleavesaffectsthetotal

ore,largercrowns

constituteanegativeindicatorofairqualityinBVOC-

emittingspecies.

Atrade-off(orenvironmentaldisservice)ofurbanfor-

pe,113millionindividuals

sufferfromallergicrhinitisand68millionfromallergic

asthma(EFA2011);bothnumberswilllikelyincreasedue

toclimatechange(Forsbergetal.2012).Pollenaffects

humanhealthbytriggeringsuchallergicreactions(Bartra

etal.2007;Carin

˜

anosetal.2016).Pollendepositionon

leafsurfaces,however,helpstoabatepollenconcentrations

intheair(DzierzanowskiandGawronski2011;Terzaghi

etal.2013)likelybymechanismssimilartothoseregu-

anforestpollution-pollen

nexus,however,tance,recent

evidencesuggeststhatairpollutioncanchangetheprotein

profileofallergenicpollensandthismayincreasethe

symptomaticresponseinsensitivepeople(Hingeetal.

2017).ThereviewbyGroteetal.(2016),producedwithin

COSTActionFP1204,pointsouttocrucialknowledge

gapsassociatedwiththeemissionofpollenandVOCs,

stressingtheneedofholisticinvestigationsoftheseinter-

relatedprocesses.

Researchhasshownthatthepresenceofroadsidetrees

instreet-canyonscandisrupttheupwardstransportofair

pollutantemissions,increasingtheirstoragewithinthe

canyonandreducingthepenetrationofcleanairfromaloft.

Asaresult,higherpollutantconcentrationsmaybe

observedatpedestrianlevelwithinvegetatedcanyons

(Amorimetal.2013;Salmondetal.2013;Vosetal.2013;

GromkeandBlocken2015),whichcanalsoconstitutea

123

detal.

tstudyranked95

urbanplantspeciesbasedontheabilitytomaximizeair

quality,byremovingO

3

,NO

x

andPM,andminimizethe

associateddisservices(Sicardetal.2018).However,fur-

therinvestigationoftheinter-relationsbetweenplant

characteristics,microclimate,streetconfigurationandpol-

lutantemissionsisstillwarranted.

Restorationofsoilandwater

Urbanizationcannegativelyimpactstreamanddrinking

waterqualitybyincreasingtheloadsofnutrients,metals

andorganicpollutantstosurfaceandgroundwater(Gallo

etal.2012;LePapeetal.2012).Freshwaterprovisioning

andwaterpurificationareoftopicalinterestinurbanized

areas(VilharandSimonc

ˇ

ic

ˇ

2013).Urbanization,causing

soilsealingandareductionofvegetatedsurfaces,increases

floodingfrequencyanddurationduetoenhancedparti-

tioningofrainfallintorunoff(Galloetal.2012).Urban

forestscontributetostormwaterharvestingthroughthe

interceptionofprecipitation(LlorensandDomingo2007),

therebyplayingamajorroleinsustainingurbanwater

balanceandreducingstormwaterrunoff(Patakietal.

2011).Owingtotheirlevelsofinfluence,canopyandleaf

characteristics(includingcanopystructureanddensity;

shapeandorientationoftheleaves)aresuitableindicators

forthisbenefit.

Theinfluenceofforestcoveronsoilwaterretention

capacitydependsonthemedium-andlong-term

improvementofsoilconditions(Frehneretal.2005).

Urbanforestscanincreasethiscapacityespeciallyinthe

caseofslowlydrainedtoverywetsoils,whereas

improvementinwelldrainedsoilsismuchless(Lee1980).

Infiltrationduetourbanforestsdependsmainlyonthe

densityandcontinuityoftreecanopiesandgroundvege-

tationcover,andisoflittleimportanceforindividual

street-trees(VilharandSimonc

ˇ

ic

ˇ

2013).Soilwaterreten-

tioncapacityiscloselylinkedtotherootsystemperfor-

manceoftreesandincludesthewater-holdingcapacityof

organicandmineralsoil,aswellasofthelitterlayer(Klein

etal.2014).Incities,however,,

ore,the

indicatorsforthisbenefitare:leaftraits(shapeandorien-

tation;ous),speciescomposition,tree

andplantcovercharacteristics(rootsystem,density,con-

tinuity,andplacement),precipitationandrunoff,andsoil

water-holdingcapacity.

Ameliorationofthemicroclimate

Awell-knowneffectofurbandevelopmentisthewarmer

temperatureincitiescomparedtothesurroundingrural

Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1987

areas,knownastheurbanheatisland(UHI)(Oke1982).

Themagnitudeofwarmingthatcharacterizesagivencity

UHI,omfortandenergy

demand,-

age,urbantemperaturesareabout1–3°Cwarmerthanthe

surroundingruralenvironments,butunderwarmsummer

conditionstheycanbe[10°Cwarmer(Millsetal.2010).

Vegetationcontributestothereductionofheatstressand

windspeedeveninthesurroundingareas,withacooling

effectthatcanextendhorizontallyforupto1000minto

thebuilt-uparea(Bowleretal.2010;Klemmetal.2015).

Thelargestcoolingimpactoftreesisobservedonclearand

hotsummerdays(Bowleretal.2010).Inwinter,airtem-

peratureisslightlyreducedbyevergreentrees,withno

clearimpactonthermalcomfort(Cohenetal.2012).

Coolingofairtemperatureduetourbanforestsishigher

duringthedaythanduringthenightinsummerandthe

oppositeistrueinwinter(atleastinthedry-warmcondi-

tionsofthestudybyCohenetal.(2012)),whereascooling

ofsurfacetemperatureisgreaterduringthedayinsummer

andnearlysimilarduringthenightthroughouttheyear.

Surfacetemperaturewithinagreenspacemaybe15–20°C

lowerthanthatofthesurroundingurbanarea,givingriseto

urbanairtemperaturescoolerby0.3–9.5°C(Saaronietal.

2018).ThereviewpaperbySaaronietal.(2018),also

supportedbyCOSTActionFP1204,showednoapparent

correlationofthispark-inducedcoolingwithintheclimatic

region,whileatendencyforlargergreensites([2ha)to

induceastrongercoolingeffect([4°C)wasobserved.

However,theextentandmagnitudeoftheimpactson

humancomfortandbuildingenergydemandarefarfrom

beingeffectivelyquantifiedespeciallyduetotheirsite-

specificnature.

Urbanforestsamelioratethemicroclimateessentially

viaevapotranspirationandshading(DimoudiandNikolo-

poulou2013).Shadingbytreesreducesbothshort-wave

(direct,diffuseandreflected)andlong-waveradiation

emittedfromsurfaces(Saaronietal.2018).Whenleaves

areheatedbysolarradiation,thecoolingprocesstakes

ationoccursfromwet

,afterrainfall),whiletranspirationtakes

,shadingbytreesproducesa

netcoolingeffectinthebelow-canopyregion(Akbarietal.

2001).Plantfunctionaltraitsplayamajorroleinthissense,

sincecrownarchitectureandshape,leafclumpingand

orientation,andtheamountoffoliage(oftenexpressedas

LAI)determinetheinterceptionofsolarradiation(Cescatti

andNiinemets2004;Disney2015).Evergreentreesimpact

themicroclimatethroughouttheyear,whereastheeffectof

deciduousbroadleavesismostlyrestrictedtothegrowing

yrepresentabenefitintemperateregions

wherethepenetrationofsunraysthroughthecanopyis

benefi,extensiveareasof

shadowareusuallynotdesiredinoutdoorurbanenviron-

mentsathighlatitudecities,whichcreatesanadditional

challengeforarchitectsandurbanplanners(Lindbergetal.

2014).

Themostrelevantenvironmentalindicatorsinthe

ameliorationoftheurbanmicroclimateareairtemperature

andRH,astheycontributetothethermalcomfortofpeople

(Suscaetal.2011),

UniversalThermalClimateIndex(UTCI)andthePhysio-

logicallyEquivalentTemperature(PET)areuseful

biometeorologicalindices(Matzarakisetal.1999;Bro

¨

de

etal.2012),butwereconsideredtoocomplexforbeing

includedinFig.2asindicators.

Sequestrationofcarbondioxide(CO

2

)

Anotherimportantbenefitofurbanforestsistheircapacity

toremoveCO

2

ghtoccur

directlythroughphotosynthesisandindirectlythrough

energysavingstriggeredbymicroclimaticamelioration

(Rosenfeldetal.1998).Incities,theanthropogenicemis-

sionofCO

2

isfarabovethecapacityoftreestosequester

andstoreit(Briberetal.2013).Forinstance,urbanforests

intheUSAwereestimatedtostore712MtC,corre-

spondingtoagrosssequestrationof23MtCannually

(NowakandCrane2002),i.e.,16%oftheCstoredin

naturalforests(Woodburyetal.2007).Conversely,urban

forestsemitCO

2

totheatmosphereviarespiratorypro-

r,astheremovalusuallyexceedsthe

emission,forestsactasanetsinkofatmosphericC

(Thorntonetal.2002).Photosynthesistakesplaceunder

favourableconditionsforplants,whilestresscausedby

pruningorseveredroughtmaypromoterespiratorypro-

cesses,whichinsomecasesinducetreestoactasanetC

ral,CO

2

uptakecapacityperleafareaunitis

species-specific,beinghigherindeciduousbroadleavesand

lowerinevergreenspecies(Wrightetal.2004).Total

uptakedependsonboththephotosyntheticcapacityand

totalamountoffoliage,aswellasontheradiationavailable

withintreecanopies(Niinemets2015).Allthesetraits

tration

capacityvariesalsowiththetypeofgreenspace,being

higherinroadsidevegetationthatisclosertothetraffic

source(Wuetal.2010).TheCremovedfromtheatmo-

sphereisthenstoredinabove-andbelow-groundbiomass

andinsoilorganicmatter,whichareotherrelevantindi-

catorsofthelong-termcapacityofurbanforeststostore

singsoilorganicmatter,however,is

negligibleforindividualstreet-treesintheshortterm(Vi-

dal-Beaudetetal.2015).

123

1988

Provisioningofhabitatquality

Provisionofhabitatforbiodiversity

Forestsareamongthemostspecies-richterrestrial

ecosystems(Crocietal.2008;JimandLiu2001;Ku

¨

hn

etal.2004).Thisextendedmulti-dimensionalgreenspace

representsaresourceforurbanbiodiversity,including

wood-dwellingorganisms(Grimmetal.2008).Ifwell

designedandmanaged,urbanforestsareexpectedto

favourtheoverallgreenconnectivityacrossfragmented

anddenselybuiltareasenhancingthepermeabilityofthe

urbanmatrixforforest-andwood-dwellingspeciesandfor

biodiversityingeneral(Vergnesetal.2012;LaPointetal.

2015).

Inthelastdecades,biodiversityhasemergedasoneof

themostimportantenvironmentalconcerns(Hooperetal.

2005).Thereisagrowingconsensusthatbiodiversity

determinesecosystemfunctionsandunderlyingservices

(Isbelletal.2011;Cardinaleetal.2012)whilecontributing

,urbanbio-

diversityconstitutesnotonlyamatterofscientificinterest

butalsoanobjectofincreasingpublicconcern,andcould

beparticularlysensibletoclimatechange(Puppimde

Oliveiraetal.2014).Anapproachbasedonfunctional

diversitycanprovidethelinkbetweenbiodiversityand

EESsbytakingintoaccountthecommonfunctionsthat

speciesperforminecosystemsorthewayspeciesrespond

toanenvironmentalconstraint(Pinhoetal.2016).

TheEESsthaturbanforestsprovidetohabitatquality

canbeclassifiedintothreemajortypes:(i)provisionof

habitatforbiodiversity;(ii)supportforresilienturban

ecosystems,and(iii)provisionofgeneticdiversity(Fig.2).

TheseEESsprovideanumberofbenefitsthataresum-

marizedas:(5)provisionofresourcesforspecies-richand

abundantcommunities;(6)provisionof‘‘nursery’’treesfor

nativesaproxylicspecies;(7)supportoffunctionallyresi-

lientspeciescommunities,and8)provisionofecological

connectivityandgeneticflow(thenumbersrefertoFig.2).

Thebenefitindicatorscanbeeitherfeaturesofindividual

treesandforestpatchesorcharacteristicsoftheenviron-

mentwheretreesandforestsarelocated,ortaxonomicand

functionalmetricsreflectingdifferentcomponentsofbio-

diversity(Fig.2).

Speciesrichnessandpopulationsizeareimportant

componentsofbiodiversity,whichreflecttheamountand

,typeofleavesand

brancharchitecture)x

vegetationstructuresarelikelytoincreasetheavailability

offoragingandbreedingresourcesforamultitudeof

organisms,enhancingthenumberanddiversityofspecies

within(alphadiversity)andacross(betadiversity)forest

stands(McElhinnyetal.2006;Tassickeretal.2006).

123

detal.

Spatialandtemporalheterogeneityofurbanforestscanbe

obtainedbymaximizingspeciescompositionanddemo-

graphicstructures,thusaffectingthetypeofleaves,branch

architecture,tree-relatedmicrohabitatsandcoarsewoody

debris.

Urbanforestscanmaintainandevenincreaseoverall

richnessthankstothepresenceofexoticplant/animal

species(Pys

ˇ

ek1998;Celesti-Grapowetal.2006;Nobis

etal.2009),whosenumberishigherinurbanenvironments

comparedtoruralareas(Czechetal.2000;McKinney

2002,2006;Sattleretal.2011,butseeCadotteetal.2017).

Thepresenceofexoticanimalspecies,especiallyarthro-

pods,intheurbanenvironmentmightbeunderestimated

duetothelackofinformationandreferencespecieslists.

However,itiswelldocumentedthattheintroductionof

alienspeciescancausenegativeeffectsonforestecosys-

tems,bymodifyinghabitatsandpotentiallydisruptsome

naturalinteractionsamongspecies,whichcanalterkey

functionsinsuchecosystems(McAfeeetal.2006).Onthe

otherhanditcanalsoprovidearesourcefororganisms

fromdifferenttrophiclevels,thustakingoverthefunc-

tionalroleofendemicspeciesthatgotlocallyextinct

(Finertyetal.2016;GrayandvanHeezik2016;).

Besidesfavouringspeciesthatuseurbanforestsasa

sourceoffoodandshelter,urbanforestsprovidehabitatfor

obligatecanopy-andwood-dwellingorganisms,also

defipecies,suchasfungi,

mosses,lichens(Speight1989),aredependentupon

decayedwoodduringpartoftheirlifecycle.‘‘Nursery’’

treesforsaproxylicspeciesarerelatedtotheconceptof

‘‘habitattrees’’definedasdeadorliving,verylargeandold

microhabitat-bearingtrees(Bu

¨

tleretal.2013).Thepres-

enceofwoodydebrisandthenumberoftree-related

habitatsinfluencethespeciescompositionandgenetic

diversityoftheseorganisms,andimprovethefunctional

connectivitybetweenforestpatchesandoldtrees(Van-

dekerkhoveetal.2013).Singlehabitattreesorpartsof

urbanforeststandsneedtobewellconnectedwithfloral

feedingresourcesinsunnyopengreenareasdistributed

withinafewhundredmeters.

SupportforresilienturbanecosystemsUrbanforestsare

usuallydominatedbyopenenvironmentsandareoften

designedtoaccomplishrecreational,aestheticandregula-

tionfunctions(Nowak2006).Thecharacteristicsofurban

habitatsandthesimilarityinurbangreenssuggestthatthe

specieslivingincitiesconvergetowardasubsetofrather

homogenousspeciessharingacommonsuiteoftraits

(Haaseetal.2014;Knappetal.2008).Thiseffectisrec-

ognizedas‘biotichomogenization’(McKinney2006),and

havedeepimplicationsforconservation(butseeColding

2007;Lepczyketal.2017whenurbangreenspace

heterogeneityisincludedinthemodels).Specieslivingin

Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1989

urbanareastendtobemoregeneralistthanspecieslivingin

ruralareasorintothewild(Claveletal.2011).The

increaseofecologicallysimilarspeciescanleadan

increaseofredundancyoftheassemblages(differentspe-

cieswithsimilartraits,ecologicalrolesandfunctions)

(AlbertiandMarzluff2004).Sincemanyecosystemfunc-

tionsultimatelyrelyoninteractionsbetweenprimarypro-

ducers(plants)andothertrophiclevels(ators,

soildecomposers,andherbivores),theredundancyand

,Elmqvistetal.2003)shouldbe

extendedtomulti-trophicsystems(Lavoreletal.2013)and

includemetricsofbioticinteractions(formeasuringfunc-

tionalredundancyandresponsediversity)asindicatorsof

,Freyetal.

2018;Treschetal.2019).

Provisionofgeneticdiversity

Heterogeneousandstructurallycomplexurbanforests

mightnotbeenoughtomaintainviablepopulationsand

promotefunctionallyresilientspeciescommunitiesiftrees

andforestpatchesremainisolatedortoosmall(Turriniand

Knop2015).Communitiesinsmallandisolatedpatches

tendtocontainfewerspeciesandtobecomeincreasingly

homogenousintaxonomicandfunctionalcomposition

(McKinney2006;Knappetal.2008;TurriniandKnop

2015),thereforereducingtheresponsediversityofspecies

communities(Elmqvistetal.2003).Thespatialconfigu-

rationofurbanforestsand,inparticular,habitatconnec-

tivity,definedastheconnectednessofhabitatpatchesfora

givenspecies(FischerandLindenmayer2007),play

importantrolesinenhancingtaxonomicandfunctional

vourtrophicinteractions,

successfulreproduction,dispersalandgeneticexchange,

andproviderefugefrompredators(Tayloretal.2006),

whileenhancingmeta-populationandmeta-community

dynamics(Leiboldetal.2004;Vergnesetal.2012;

LaPointetal.2015).Thisisparticularlyimportantinview

tialscaleatwhich

ecologicalconnectivityvariesdependsonspeciescompo-

sition(LaPointetal.2015).Forsessileandlowdispersal

organisms,suchasplants,soilfaunaandgrounddwellers,

thespatialconfigurationofurbanforestsactswithintens

andhundredsofmeters,whileitexpandsuptoafew

kilometersforflyingorganismssuchasbees,birdsandbats

(Sattleretal.2010;Braakeretal.2014a,b).Indicatorsof

well-connectedpopulationsofforest-dwellingspeciesand

nt

patterns,thegeneticdiversityofmodelspeciesandfunc-

tionalresilienceofcommunities,includingtopologiesof

multi-trophicnetworkinteractions,arepromisingtools(La

Pointetal.2015).

Provisioningofothergoodsandservices

Provisionofenergyandnutrients

AnothermajorcategoryofEESsprovidedbyurbanforests

istheprovisioningofothergoodsandservices(Go

´

mez-

BaggethunandBarton2013;HansenandPauleit2014).

TheseEESscanbeclassifiedintothefollowingtwotypes:

(i)provisionofenergyandnutrients;and(ii)provisionof

greyinfrastructureresilience(Fig.2).TheseEEStypes

provideanumberofbenefits:(9)bioenergyandcompost;

(10)foodandfeed;(11)non-timberforestproducts

(NTFPs);and(12)buildingpreservation(thenumbersrefer

toFig.2).Individualindicatorscharacterizingtheprovi-

sioningofdifferentgoodsandservicesfromtreesorthe

environmentaresuggestedanddiscussedbelow.

Twopossibilitiesforresourcerecoveryareusually

considered:nutrientrecoveryviacompostingthefoliage

and/orenergyrecoveryviabiomassproductivity(interms

ofcalorificvalue).Woodyvegetationisanimportant

renewableresourceforbioenergy,alleviatingthegrowing

demandforcroppedbiofuels(deRichteretal.2009).

Large-scalecommercialplantationsoftreessuchaspoplar

andwillow,mainlyinurbanparksandperi-urbanwood-

lands,mayfulfilthecurrentdriveforenergysustainability

fromrenewablebiomass(Djomoetal.2015;Seideletal.

2015).Forexample,sustainablygrowntreebiomassis

projectedtoprovideupto10%oftheUKenergyneedsby

2050andtosignificantlycontributetothereductionof

GHGemissions(DECC2012).Thebiomasspotentialis

evaluatedbymultiplyingtheprimaryproductionbythe

residue-to-productratio,whichisatree-specificindicator

(BISYPLAN2012).Therecoveryofbioenergy,mainlyas

heatfromthecombustionofmanagedurbanforests,is

ting

value(expressedinwettons)isrelatedtoitstypicalstoi-

chiometricchemicalcomposition(AIEL2008).Therefore,

suitableindicatorsofbioenergyprovisionpotentialinclude

tree-specificstructuralcharacteristics,biomassyieldand

antlimitations

arethemanyenergycrops,suchaswillowandpoplar,

whicharestrongemittersofallergensandBVOCs(Olof-

ssonetal.2005;Owenetal.2013),andbiomasscom-

bustionthatemitsconsiderableamountsofPM(Limetal.

2015),bothofwhichcouldadverselyaffectairquality.

Urbanforestshavethepotentialtoofferasourceof

,foodandfeed).Com-

munityscaleandindividualinitiativesaregainingpopu-

larityforsecuringsustainablefoodproductionwhile

ensuringminimalenvironmentalfootprints(Lambinand

Meyfroidt2011).Althoughthereisahugepotentialfor

urbanforestEESstoprovideasustainablesupplyof

nutritionfromtrees(,seeds,roots),thereare

123

1990

limitationsposedbytheirtoxicityandedibilityforhuman

consumptiondrivenbypollutionoftheurbanhabitats

(Bhatetal.2010).Therefore,toxicityandthecommercial

valueofproductswereidentifiedasthekeyindicatorsfor

thisbenefition,productivityisconsideredasa

measureofthevolumeofsupplythatcanbeacquiredto

ndicatorsareapplicabletowards

ensuringcost-competitivenessandwidespreadsustainabil-

ityincentivesinboththedevelopedanddevelopingworlds.

Mostresourcemanagementdecisionsarestrongly

infl

associatedwithNTFPs(,flowers,leaves,bark,

cones,galls,resins,springbuds,fungi,honey)accountfor

approximately25–96%ofthetotaleconomicvalueof

forests(Palahietal.2008).Thecost-competitivenessof

theseproducts,however,largelydependsontheiracces-

sibility(McLainetal.2012)andmarketability(Ticktinand

Shackleton2011),whichhavebeenidentifiedaskey

indicatorsforassessingthisbenefit,togetherwiththecli-

maticconditionsthataffectNTFPgrowth.

Provisionofgreyinfrastructureresilience

Incorporatingurbanforestsintotheurbanbuiltspaceis

gainingpopularityasacost-effectiveandlong-termmea-

sureformitigatingclimatechangeimpactsassociatedwith

proliferatinggreyinfrastructure(CABE2010;Hamdouch

andDepret2010;Wangetal.2018).Theroleofurban

forestsindevelopingresilienceandenvironmentalstew-

ardshipincities(ColdingandBarthel2013)andinthe

preservationofbuildings(includingbridges,carparksand

historicalmonuments)mainly

attributedtothealteredmicro-meteorologicalprofileand

chemicalwitheringofbuildingmaterialscausedbyair

pollutionandthechangingclimate(KumarandImam

2013;TiwaryandKumar2014).Asthisisinfluencedbyan

interplaybetweenplantmorphological,biophysicaland

chemicaltraits,thesuitableindicatorsofthisEESbenefit

includetreecanopyarchitectureandpositionrelativeto

buildinginfrastructures,leafphysicaltraits,micro-meteo-

rologyandtheconcentrationofpollutants.

Conclusions

Ecosystemservicesplayacrucialroleintheoptimization

orestscanreduceairpol-

lutionandgreenhousegasemissions,sequestercarbon,

regulateairtemperature,mitigatestormwaterrunoff,

reducenoise,aswellasproviderecreational,social,psy-

chologicalandaestheticbenefistudy,weprovide

36indicatorsthatcanbeusedforquantifyingurbanforest

EESs,predictingclimatechangeeffectsonurbanforests,

123

detal.

anddevelopingscientificallysoundstrategiesforoptimiz-

ingthemanagementofurbanforestsandmaximizingtheir

ndicatorsmayalsobecombinedtodevelop

summaryindices,suchasthe‘‘pollutionfluxpotential’’

index(Tiwaryetal.2016).Aroundtwo-thirdsofthemare

indicatorsoftreesandforeststandsandcanbeobtainedby

measurementsorliteraturedata,whileone-thirdareindi-

catorsofenvironmentalorbiodiversitycharacteristicsand

seindicatorsallow

efficientquantitativeassessmentsofurbanforestEESson

largeareasandacrosscities,eventhoughtheystillneedto

beadequatelyandrigorouslytested,especiallywhen

appliedacrosstaxa,

improvedunderstandingisneededtoincreasethewilling-

nessofpublicentities(Vuletic

´

etal.2010)andprivate

companies(Glu

¨

cketal.2010)toacknowledgeurbanforest

EESs.

Citiesareconstantlyevolving(Stottetal.2015).Dif-

ferencesintheurbanizationprocessdependonthehistor-

icalbackground,urbandesignandavailablegreenspaces

ore,guidelinesontheopti-

mizationofEESsandtherelatedchoiceofspeciesand

plantingarchitecturearecase-specificandmustrelyon

edifferentEESsarestrongly

interconnectedandsometimesshowcomplexandcon-

trastinginteractions,thechoiceanddesignofurbanforests

requirealocalbutscience-basedapproach.A‘‘species

selector’’shouldbedevelopedineachcontinentasatoolto

helppolicy-makerstodefinesuitableurbanforestman-

agement,includingpropertreespeciesselection,by

ging

approachinthisregardistoconsiderurbanforestsas

Nature-BasedSolutionsintheurbanenvironmentand

integrationofNature-BasedSolutionsisrecognizedasa

waytoachieveseveralenvironmental,social,cultural,

economic,policyandplanningaims(HansenandPauleit

2014;MadureiraandAndresen2014),andasatoolto

maximizecityresiliencetoclimatechangewhilemini-

,maintenancecosts,

infrastructuredamage/degradation,allergicreactions).

ThereisstilllittleinformationavailableontheEESspro-

videdbyurbanforestsandtowhatextenturbanforestsplay

portant

torecognizethaturbanforestEESsconfersubstantial

economicvaluetohumansocietiesandactivitiesinurban

areas(Haaseetal.2014).Accuratecalculationsofurban

forestEEScapacity,basedontherecommendedindicators,

willprovideabasisfortheeconomicevaluationsof

changesandenablestakeholderstoestimatethetrade-offs

betweenEESsandotherservices,suchasagriculturalfood

production(MEA2005)orurbanization(Dobbsetal.

2011).

Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1991

AcknowledgementsThisworkwascarriedoutwithinCOSTAction

ktheparticipantsofourconferences

forsharingtheirexpertknowledgeindefiningtheurbanforestEES

publicationwasfinanciallysupportedbytheMinistryofEducation

andScienceoftheRussianFederation(theAgreementNo.

02.A03.21.0008).WeacknowledgeARCHESConseilsfordrafting

ationwascarriedoutwithinthePRINproject

EUFORICC.

OpenAccessThisarticleisdistributedunderthetermsofthe

CreativeCommonsAttribution4.0InternationalLicense(crea

/licenses/by/4.0/),whichpermitsunrestricteduse,

distribution,andreproductioninanymedium,providedyougive

appropriatecredittotheoriginalauthor(s)andthesource,providea

linktotheCreativeCommonslicense,andindicateifchangeswere

made.

References

AIEL,ItalianAgroforestryEnergyAssociation(2008)Woodfuels

ed03Jan2018

AkbariH,PomerantzM,TahaH(2001)Coolsurfacesandshadetrees

Energy70:295–310

AlbertiM,MarzluffJM(2004)Ecologicalresilienceinurban

ecosystems:linkingurbanpatternstohumanandecological

cosyst7:241–265

AmorimJH,RodriguesV,TavaresR,ValenteJ,BorregoC(2013)

CFDModellingoftheaerodynamiceffectoftreesonurbanair

alEnviron461–462:541–551

ArmsonD,StringerP,EnnosAR(2012)Theeffectoftreeshadeand

ForUrbanGreen11:245–255

BackhausS,WiehlD,BeierkuhnleinC,JentschA,WellsteinC

(2014)Warminganddroughtdonotinfluencethepalatabilityof

offourEuropeanprovenances.

Arthropod-PlantInteract8:329–337

BaeJ,RyuY(2015)Landuseandlandcoverchangesexplainspatial

andtemporalvariationsofthesoilorganiccarbonstocksina

UrbanPlan136:57–67

BaldockKCR,GoddardMA,HicksDM,KuninWE,MitschunasN,

OsgathorpeLM,PottsSG,RobertsonKM,ScottAV,StoneGN,

VaughanIP,MemmottJ(2015)WhereistheUK’spollinator

biodiversity?Theimportanceofurbanareasforflower-visiting

ocBBiolSci282(1803):20142849

BartraJ,MullolJ,delCuvilloA,Da

´

vilaI,FerrerM,Ja

´

ureguiI,

MontoroJ,SastreJ,ValeroA(2007)Airpollutionandallergens.

JInvestigAllergolClinImmunol17:3–8

BenjaminMT,WinerAM(1998)Estimatingtheozone-forming

nviron32:53–68

BhatR,RaiRV,KarimAA(2010)Mycotoxinsinfoodandfeed:

evFoodSciFood

Saf9:57–81

BISYPLAN(2012)TheEuropeanBioenergySystemPlannersweb-

://ed03Jan

2018

BowlerDE,BuyungAL,KnightTM,PullinAS(2010)Urban

greeningtocooltownsandcities:asystematicreviewofthe

UrbanPlan97:147–155

BraakerS,GhazoulJ,ObristMK,MorettiM(2014a)Habitat

connectivityshapesurbanarthropodcommunities:thekeyrole

y95:1010–1021

BraakerS,MorettiM,BoeschR,GhazoulJ,ObristMK,BontadinaF

(2014b)Assessinghabitatconnectivityforground-dwelling

pl24:1583–1595

BriberBM,HutyraLR,DunnAL,RacitiSM,MungerJW(2013)

VariationsinatmosphericCO

2

mixingratiosacrossaBoston,

2:304–327

Bro

¨

deP,FialaD,Błaz

_

ejczykK,Holme

´

rI,JendritzkyG,Kampmann

B,TinzB,HavenithG(2012)Derivingtheoperational

procedurefortheuniversalthermalclimateindex(UTCI).IntJ

Biometeorol56:481–494

Bu

¨

tlerR,LachatT,LarrieuL,PailletY(2013)Habitattrees:key

:KrausD,KrummF(eds)

Focus—managingforestinEurope,integrativeapproachesasan

an

ForestInstitute,Joensuu,pp84–91

CABE(2010)Urbangreennation:

CommissionforArchitectureandtheBuiltEnvironment,

London,p56

CadotteMW,YasuiSLE,LivingstoneS,MacIvorJS(2017)Are

urbansystemsbeneficial,detrimental,orindifferentforbiolog-

icalinvasion?BiolInvasions19:3489–3503

CalfapietraC,FaresS,LoretoF(2009)Volatileorganiccompounds

n

Pollut157:1478–1486

CalfapietraC,FaresS,ManesF,MoraniSgrignaG,LoretoF(2013)

Roleofbiogenicvolatileorganiccompounds(BVOC)emitted

byurbantreesonozoneconcentrationincities:areview.

EnvironPollut183:71–80

CalfapietraC,NiinemetsU

¨

,Pen

˜

uelasJ(2015)Urbanplantphysiol-

ogy:adaptation-mitigationstrategiesunderpermanentstress.

TrendsPlantSci20:72–75

CardinaleBJ,DuffyJE,GonzalezA,HooperDU,PerringsC,Venail

P,NarwaniA,MaceGM,TilmanD,WardleDA,KinzigAP,

DailyGC,LoreauM,GraceJB,LarigauderieA,SrivastavaDS,

NaeemS(2012)Biodiversitylossanditsimpactonhumanity.

Nature486:59–67

Carin

˜

anosP,Casares-PorcelM,Dı

´

azValle,delaGuardiaA,Dela

CruzMa

´

rquezR,Dı

´

azdelaGuardiaC(2016)Chartingtrendsin

theevolutionoftheLaAlhambraforest(Granada,Spain)

Change135:453–466

Celesti-GrapowL,PysekP,JarosikV,BlasiC(2006)Determinants

ofnativeandalienspeciesrichnessintheurbanfloraofRome.

DiversDistrib12:490–501

CescattiA,NiinemetsU

¨

(2004)landscape.

In:SmithWK,VogelmannTC,ChritchleyC(eds)Photosyn-

icalstudies

er,Berlin,pp42–85

ChenJ,ZhuL,FanP,TianL,LafortezzaR(2016)Dogreenspaces

affectthespatiotemporalchangesofPM

2.5

inNanjing?Ecol

Process5:1–13

CieslikS,PaolettiE,OmasaK(2009)Whyandhowterrestrialplants

exchangegaseswithair:iol11:24–34

ClavelJ,JulliardR,DevictorV(2011)Worldwidedeclineof

specialistspecies:towardaglobalfunctionalhomogenization?

FrontEcolEnviron9:222–228

CohenP,PotchterO,MatzarakisA(2012)Dailyandseasonal

climaticconditionsofgreenurbanopenspacesintheMediter-

Environ51:285–295

ColdingJ(2007)‘Ecologicalland-usecomplementation’forbuilding

UrbanPlan81:46–55

ColdingJ,BarthelS(2013)Thepotentialof‘UrbanGreenCommons’

on86:156–166

123

1992

CrociS,ButetA,GeorgesA,AguejdadR,ClergeauP(2008)Small

urbanwoodlandsasbiodiversityconservationhotspot:amulti-

Ecol23:1171–1186

CzechB,KrausmanPR,DeversPK(2000)Economicassociations

amongcausesofspeciesendangermentintheUnitedStates.

Bioscience50:593–601

DavidsonCM,UrquhartGJ,Ajmone-MarsanF,BiasioliM,DaCosta

DuarteA,Dı

´

az-BarrientosE,Grc

ˇ

manH,HossackI,Hursthouse

AS,MadridL,RodriguesS,ZupanM(2006)Fractionationof

potentiallytoxicelementsinurbansoilsfromfiveEuropean

citiesbymeansofaharmonisedsequentialextractionprocedure.

AnalChimActa565:63–72

DeGrootRS,WilsonM,BoumansR(2002)Atypologyforthe

description,classificationandvaluationofecosystemfunctions,

on41:393–408

deRichterDB,JenkinsDH,KarakashJT,KnightJ,McCreeryLR,

NemestothyKP(2009)e

323:1432–1433

DECC,DepartmentofEnergyandClimateChange(2012)UK

BioenergyStrategy,

DimoudiA,NikolopoulouM(2013)Vegetationintheurban

environment:microclimaticanalysisandbenefiBuild

35:69–76

DisneyM(2015)Remotesensingofvegetation:potentials,limita-

tions,:HikosakaK,Anten

NPR,NiinemetsU

¨

(eds)Canopyphotosynthesis:frombasicsto

esinphotosynthesisandrespiration,vol42.

Springer,Berlin,pp283–331

DjomoSN,AcA,ZenoneT,DeGrooteT,BerganteS,FacciottoG,

SixtoH,CiriaCiriaP,WegerJ,CeulemansR(2015)Energy

performancesofintensiveandextensiveshortrotationcropping

ustain

EnergyRev41:845–854

DobbsC,EscobedoFJ,ZippererWC(2011)Aframeworkfor

developingurbanforestecosystemservicesandgoodsindicators.

LandscUrbanPlan99:196–206

DzierzanowskiK,GawronskiSW(2011)Useoftreesforreducing

odTechnol2:69–73

anFederationofAllergyandAirwayDiseasesPatients

Association(2011)Respiratoryallergies—raiseawareness,

:ValovirtaE(ed).Brussels,Belgium,p59

ElmqvistT,FolkeC,NystromM,PetersonG,BengtssonJ,WalkerB,

NorbergJ(2003)Responsediversity,ecosystemchange,and

colEnviron1:488–494

EscobedoFJ,KroegerT,WagnerJE(2011)Urbanforestsand

pollutionmitigation:analyzingecosystemservicesanddisser-

nPollut159:2078–2087

EuropeanEnvironmentAgency(2015)AirqualityinEurope—2015

No5/2015

EuropeanEnvironmentAgency,lityinEurope-2018

12/ationsOfficeoftheEuropeanUnion.

978-92-9213-989-6

FaresS,McKayM,HolzingerR,GoldsteinAH(2010)Ozonefluxes

inaPinusponderosaecosystemaredominatedbynon-stomatal

processes:evidencefromlong-termcontinuousmeasurements.

AgricForMeteorol150:420–431

FinertyGE,deBelloF,BilaK,BergMP,DiasATC,PezzattiGB,

MorettiM(2016)Exoticornot,leaftraitdissimilaritymodulates

theeffectofdominantspeciesonmixedlitterdecomposition.

JEcol104:1400–1409

FischerJ,LindenmayerDB(2007)Landscapemodificationand

habitatfragmentation:olBiogeogr

16:265–280

ForsbergB,Bra

˚

ba

¨

ckL,KeuneH,KobernusM,vonKraussMK,

YangA,BartonovaA(2012)Anexpertassessmentonclimate

123

detal.

changeandhealth—withaEuropeanfocusonlungsand

nHealth11:S4

FrehnerM,WasserB,SchwitterR(2005)Nachhaltigkeitund

tungfu

¨

rPflegemassnah-

meninWa

¨

amtfu

¨

rUmwelt.

WaldundLandschaft,Bern

FreyD,VegaK,ZellwegerF,GhazoulJ,HansenD,MorettiM

(2018)Predationriskshapedbyhabitatandlandscapecomplex-

col55:2343–2353

FuZH,HuyanJQ,LiF,SongYS,ZhaoD,LiH(2015)Impactsof

EcolSin33(18):5500–5508

GalloEL,LohseKA,BrooksPD,McintoshJC,MeixnerT,Mclain

JET(2012)Quantifyingtheeffectsofstreamchannelsonstorm

l

470–471:98–110

GiannicoV,LafortezzaR,JohnR,SanesiG,PesolaL,ChenJ(2016)

Estimatingstandvolumeandabove-groundbiomassofurban

Glu

¨

ckP,Avdibegovic

´

M,C

ˇ

Sens8:1–14

abaravdic

´

A,Nonic

´

D,Petrovic

´

N,

PosavecS,StojanovskaM(2010)Thepreconditionsforthe

formationofprivateforestowners’interestassociationsinthe

icyEcon12:250–263

Go

´

mez-BaggethunE,BartonDN(2013)Classifyingandvaluing

on86:235–245

GrayER,vanHeezikY(2016)Exotictreescansustainnativebirdsin

cosyst19:315–329

GrimmNB,FaethSH,GolubiewskiNE,RedmanCL,WuJG,Bai

XM,BriggsJM(2008)Globalchangeandtheecologyofcities.

Science319:756–760

GromkeC,BlockenB(2015)Influenceofavenue-treesonairquality

:trafficpollutant

concentrationsatpedestrianlevel.

GroteR,MonsonRK,NiinemetsU

¨

EnvironPollut196:176–184

(2013)Leaf-levelmodelsof

constitutiveandstress-driven

:NiinemetsU

¨

volatileorganiccompoundemis-

,MonsonRK(eds)Biology,controlsand

modelsoftreevolatileorganiccompoundemissions,

er,Berlin,pp315–355

GroteR,SamsonR,AlonsoA,AmorimJU,CalfapietraC,Carin

˜

anos

P,ChurkinaG,FaresS,LeThiecD,NiinemetsU,Mikkelsen

TN,PaolettiE,TiwaryA(2016)Functionaltraitsofurbantrees

inrelationtotheirairpollutionmitigationpotential:aholistic

colEnviron14:543–550

GuoZ,XiaoX,LiD(2000)Anassessmentofecosystemservices:

waterfl

Appl10:925–936

HaaseD,LarondelleN,AnderssonE,ArtmannM,BorgstromS,

BreusteJ,Gomez-BaggethunE,GrenA,HamsteadZ,HansenR,

KabischN,KremerP,LangemeyerJ,RallEL,McPhearsonT,

PauleitS,QureshiS,SchwarzN,VoigtA,WursterD,Elmqvist

T(2014)Aquantitativereviewofurbanecosystemservice

assessments:concepts,models,

43:413–433

HamdouchA,DepretMH(2010)Policyintegrationstrategyandthe

developmentofthe‘greeneconomy’:foundationsandimple-

onPlanManag53:473–490

HandleyK,Hough-GoldsteinJ,HanksLM,MillarJG,D’AmicoV

(2015)Speciesrichnessandphenologyofcerambycidbeetlesin

omolSoc

Am108:251–262

HansenR,PauleitS(2014)Frommultifunctionalitytomultiple

ecosystemservices?aconceptualframeworkformultifunction-

43:516–529

HarrisonT,WinfreeR(2015)Urbandriversofplant-pollinator

col29:879–888

Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1993

HingeV,TidkeJ,DasB,BhuteS,ParabP,ApteK(2017)Air

pollutionexacerbateseffectofallergenicpollenproteinsof

Cassiasiamea:56:147–154

HooperDU,ChapinFS,EwelJJ,HectorA,InchaustiP,LavorelS,

LawtonJH,LodgeDM,LoreauM,NaeemS,SchmidB,Setala

H,SymstadAJ,VandermeerJ,WardleDA(2005)Effectsof

biodiversityonecosystemfunctioning:aconsensusofcurrent

nogr75:3–35

IkinK,LeRouxDS,RaynerL,VillasenorNR,EylesK,GibbonsP,

ManningAD,LindenmayerDB(2015)Keylessonsforachiev-

nagRestor

16:206–214

IrgaPJ,BurchettMD,TorpyFR(2015)Doesurbanforestryhavea

quantitativeeffectonambientairqualityinanurbanenviron-

ment?AtmosEnviron120:173–181

IsbellF,CalcagnoV,HectorA,ConnollyJ,HarpoleWS,ReichPB,

Scherer-LorenzenM,SchmidB,TilmanD,vanRuijvenJ,

WeigeltA,WilseyBJ,ZavaletaES,LoreauM(2011)Highplant

477:199–202

JimCY,LiuHT(2001)Speciesdiversityofthreemajorurbanforest

typesinGuangzhouCity,lManag146:99–114

KarabourniotisG,LiakopoulosG,NikolopoulosD,BrestaP,

StavroulakiV,SumbeleS(2014)‘‘aving,

e’’:twodilemmaswithsolublephenolicsasa

ci227:21–27

KardelF,WuytsK,MaherBA,SamsonR(2012)Intra-urbanspatial

variationofmagneticparticles:monitoringvialeafsaturation

isothermalremanentmagnetisation(SIRM).AtmosEnviron

55:111–120

KarpA,HanleySJ,TrybushSO,MacalpineW,PeiM,ShieldI

(2011)Geneticimprovementofwillowforbioenergyand

rPlantBiol53:151–165

KleinT,RotenbergE,Cohen-HilalehE,Raz-YaseefN,TatarinovF,

PreislerY,Oge

´

eJ,CohenS,YakirD(2014)Quantifying

transpirablesoilwateranditsrelationstotreewateruse

rology

7:409–419

KlemmW,HeusinkveldBG,LenzholzerS,JacobsMH,VanHoveB

(2015)Psychologicalandphysicalimpactofurbangreenspaces

onoutdoorthermalcomfortduringsummertimeinTheNether-

nviron83:120–128

KnappS,KuhnI,SchweigerO,KlotzS(2008)Challengingurban

speciesdiversity:contrastingphylogeneticpatternsacrossplant

tt11:1054–1064

KnopE(2016)Biotichomogenizationofthreeinsectgroupsdueto

angeBiol22:228–236

Ku

¨

hnI,BrandlR,KlotzS(2004)ThefloraofGermancitiesis

olRes6:749–764

KumarP,ImamB(2013)Footprintsofairpollutionandchanging

TotalEnviron444:85–101

LafortezzaR,ChenJ(2016)Theprovisionofecosystemservicesin

responsetoglobalchange:n

Res147:576–579

Laliberte

´

E,WellsJA,DeClerckF,MetcalfeDJ,CatterallCP,

QueirozC,AubinI,BonserSP,DingY,FraterrigoJM,

McNamaraS,MorganJW,MerlosDS,VeskPA,Mayfield

MM(2010)Land-useintensificationreducesfunctionalredun-

tt

13:76–86

LambinEF,MeyfroidtP(2011)Globallandusechange,economic

globalization,tlAcadSci

108:3465–3472

LaPointS,BalkenholN,HaleJ,SadlerJ,vanderReeR(2015)

col

29:868–878

LarcherW(1995)Physiologicalplantecology,er,

Berlin,p506

LavorelS,StorkeyJ,BardgettRD,deBelloF,BergMP,LeRouxX,

MorettiM,MulderC,PakemanRJ,DiazS,HarringtonR(2013)

Anovelframeworkforlinkingfunctionaldiversityofplantswith

othertrophiclevelsforthequantificationofecosystemservices.

JVegSci24:942–948

LePapeP,AyraultS,QuantinC(2012)Traceelementbehaviorand

partitionversusurbanizationgradientinanurbanriver(Orge

River,France).JHydrol472–473:99–110

LeRouxDS,IkinK,LindenmayerDB,ManningAD,GibbonsP

(2014)

ONE9(6)::///10.1371/.0099403

LeeR(1980)iaUniversityPress,New

York

LehvavirtaS,RitaH(2002)Naturalregenerationoftreesinurban

i13:57–66

LeiboldMA,HolyoakM,MouquetN,AmarasekareP,ChaseJM,

HoopesMF,HoltRD,ShurinJB,LawR,TilmanD,LoreauM,

GonzalezA(2004)Themetacommunityconcept:aframework

tt7:601–613

LelieveldJ,DentenerFJ(2000)Whatcontrolstroposphericozone?

JGeophysResAtmos105:3531–3551

LepczykCA,AronsonMFJ,EvansKL,GoddardMA,LermanSB,

MacivorJS(2017)Biodiversityinthecity:fundamental

questionsforunderstandingtheecologyofurbangreenspaces

ence67:799–807

LiW,WangF,BellS(2007)Simulatingtheshelteringeffectsof

ngInd

Aerodyn95:533–549

LiS,TosensS,HarleyPC,

JaametsK,NiinemetsU

¨

JiangY,KanagendranA,GrosbergM,

(2018)Glandulartrichomesasabarrier

againstatmosphericoxidativestress:relationshipswithozone

uptake,leafdamage,andemissionofLOXproductsacrossa

ellEnviron41:1263–1277

LimMT,PhanA,RoddyD,HarveyA(2015)Technologiesfor

measurementandmitigationofparticulateemissionsfrom

domesticcombustionofbiomass:ustain

EnergyRev49:574–584

LindbergF,HolmerB,ThorssonS,RaynerD(2014)Characteristics

ofthemeanradianttemperatureinhighlatitudecities-

Biometeorol58:613–627

Llausa

`

sA,RoeM(2012)Greeninfrastructureplanning:cross-

nationalanalysisbetweentheNorthEastofEngland(UK)and

Catalonia(Spain).EurPlanStud20:641–663

LlorensP,DomingoF(2007)Rainfallpartitioningbyvegetation

wofstudiesinEurope.

JHidrol335:37–54

LoGulloMA,SalleoS(1988)Differentstrategiesofdrought

resistanceinthreeMediterraneansclerophylloustreesgrowingin

tol108:267–276

MadureiraH,AndresenT(2014)Planningformultifunctionalurban

greeninfrastructures:esInt

19:38–49

MaesJ,LiqueteC,TellerA,ErhardM,ParacchiniML,BarredoJ,

GrizzettiB,CardosoA,SommaF,PetersenJE,MeinerA,Royo

GelabertE,ZalN,KristensenP,Bastrup-BirkA,BialaK,

PiroddiC,EgohB,DegeorgesP,FiorinaC,Santos-Martı

´

nF,

ˇ

sevic

ˇ

iusVN,VerbovenJ,PereiraEM,BengtssonJ,GochevaK,

PedrosoCM,Sna

¨

llT,EstreguilC,San-Miguel-AyanzJ,Pe

´

rez-

SobaM,Gre

ˆ

t-RegameyA,LillebøA,MalakDA,Conde

´

S,

MoenJ,Czu

´

czB,DrakouEG,LavalleC,ZulianG(2016)An

123

1994

indicatorframeworkforassessingecosystemservicesinsupport

tServ17:14–23

MarianiL,ParisiSG,ColaG,LafortezzaR,ColangeloG,SanesiG

(2016)Climatologicalanalysisofthemitigatingeffectof

vegetationontheurbanheatislandofMilan,al

Environ569:762–773

MatzarakisA,MayerH,IziomonMG(1999)Applicationsofa

universalthermalindex:physiologicalequivalenttemperature.

IntJBiometeorol43:76–84

McAfeeBJ,NealisVG,MalouinC(2006)Invasivealienspeciesat

nments34:85–88

McDonaldAG,BealeyWJ,FowlerD,DragositsU,SkibaU,Smith

RI,DonovanRG,BrettHE,HewittCN,NemitzE(2007)

Quantifyingtheeffectofurbantreeplantingonconcentrations

anddepositionsofPM

10

Environ41:8455–8467

McElhinnyC,GibbonsP,BrackC,BauhusJ(2006)Fauna–habitat

relationships:abasisforidentifyingkeystandstructural

attributesintemperateAustralianeucalyptforestsandwood-

vBiol12:89–110

McKinneyML(2002)Urbanization,biodiversity,andconservation.

Bioscience52:883–890

McKinneyML(2006)Urbanizationasamajorcauseofbiotic

ns127:247–260

McLainRJ,MacFarlandK,BrodyL,HebertJ,HurleyP,PoeM,

ButtolphLP,GabrielN,DzunaM,EmeryMR,CharnleyS

(2012)Gatheringinthecity:anannotatedbibliographyand

reviewoftheliteratureabouthuman-plantinteractionsinurban

ecosystems,lTechnicalReportsPNW-GTR-849.

Portland,OR:mentofAgriculture,ForestService,

PacificNorthwestResearchStation

MEA,MillenniumEcosystemAssessment(2005)Ecosystemsand

Press,

Washington,DC,p281

MillsG,CleughH,EmmanuelR,EndlicherW,ErellE,McGranahan

G,NgE,NicksonA,RosenthalJ,SteemerK(2010)Climate

informationforimprovedplanningandmanagementofmega

cities(needsperspective).ProcediaEnvironSci1:228–246

MoriJ,SæbøA,HanslinHM,TeaniA,FerriniF,FiniA,BurchiG

(2015)Depositionoftraffic-relatedairpollutantsonleavesofsix

evergreenshrubspeciesduringaMediterraneansummerseason.

Urban

NiinemetsU

¨

ForUrbanGreen14:264–273

(2015)Within-canopyvariationsinfunctionalleaftraits:

structural,chemicalandecologicalcontrolsanddiversityof

:HikosakaK,AntenNPR,NiinemetsU

¨

(eds)

Canopyphotosynthesis:esin

photosynthesisandrespiration,er,Berlin,

pp101–141

NiinemetsU

¨

,KuhnU,HarleyPC,StaudtM,ArnethA,CescattiA,

CiccioliP,CopoloviciL,GeronC,GuentherAB,KesselmeierJ,

LerdauMT,MonsonRK,Pen

˜

uelasJ(2011)Estimationsof

isoprenoidemissioncapacityfromenclosurestudies:measure-

ments,dataprocessing,qualityandstandardizedmeasurement

protocols.

NiinemetsU

¨

Biogeosciences8:2209–2246

,FaresS,HarleyP,JardineKJ(2014)Bidirectional

exchangeofbiogenicvolatileswithvegetation:emission

sources,reactions,ellEnviron

37:1790–1809

NobisMP,JaegerJAG,ZimmermannNE(2009)Neophytespecies

richnessatthelandscapescaleunderurbansprawlandclimate

Distrib15:928–939

NowakDJ(2006)Institutionalizingurbanforestryasa‘‘biotechnol-

ogy’’orUrbanGreen

5:93–100

NowakDJ,CraneDE(2002)Carbonstorageandsequestrationby

nPollut116:381–389

123

detal.

NowakDJ,StevensJC,SisinniSM,LuleyCJ(2002)Effectsofurban

treemanagementandspeciesselectiononatmosphericcarbon

ic28:113–122

NowakDJ,CraneDE,StevensJC(2006)Airpollutionremovalby

orUrban

Green4:115–123

NowakD,JovanS,BranquinhoC,AugustoS,RibeiroMC,Kretsch

CE(2015)Biodiversity,:

tingGlobalPriorities-Biodiversityand

HumanHealth:ealth

OrganizationandSecretariatoftheConventiononBiological

Diversity,Chapter4,p63–9789241508537

NowakDJ,HirabayashiS,DoyleM,McGovernM,PasherJ(2018)

AirpollutionremovalbyurbanforestsinCanadaanditseffect

orUrbanGreen

29:40–48

OishiY,TabataK(2015)Theimportanceoflargetreesinshrine

forestsfortheconservationofepiphyticbryophytesinurban

:LoY-H,BlancoJA,RoyS(eds)Biodiversityin

ecosystems—Open,Lon-

don,UK,ISBN978-953-51-2028-5

OkeTR(1982)

MeteorolSoc108(455):1–24

OlofssonM,Ek-OlaussonB,JensenNO,LangerS,Ljungstro

¨

mE

(2005)Thefluxofisoprenefromawillowcoppiceplantation

nviron39:2061–2070

OwenSM,HewittCN,RowlandCS(2013)Scalingemissionsfrom

:NiinemetsU

¨

,

MonsonRK(eds)Biology,controlsandmodelsoftreevolatile

er,Hei-

delberg,pp415–450

PalahiM,MavsarR,GraciaC,BirotY(2008)Mediterraneanforests

Rev10:676–688

PanditR,PolyakovM,TapsuwanS,MoranT(2013)Theeffectof

streettreesonpropertyvalueinPerth,

UrbanPlan110:134–142

PaolettiE(2006)ImpactofozoneonMediterraneanforests:areview.

EnvironPollut144:463–474

PaolettiE(2009)nPollut

157:1506–1512

PaolettiE,KarnoskyDF,PercyKE(2004)Urbantreesandair

:KonijnendijkCC,SchipperijnJ,HoyerKK(eds)

Forestryservingurbanisedsocieties,orld

Series,IUFROHeadquarters,Vienna,pp129–154

PascalM,CorsoM,ChanelO,DeclercqC,BadaloniC,CesaroniG,

HenschelS,MeisterK,HaluzaD,Martin-OlmedoP,MedinaS

(2013)Assessingthepublichealthimpactsofurbanairpollution

in25Europeancities:al

Environ449:390–400

PatakiDE,McCarthyHR,LitvakE,PincetlS(2011)Transpirationof

pl

21:661–677

PearlmutterD,BerlinerP,ShavivE(2007)Urbanclimatologyinarid

regions:imatol

27:1875–1885

PesolaL,ChengX,SanesiG,ColangeloG,EliaM,LafortezzaR

(2017)Linkingabovegroundbiomassandbiodiversitytostand

developmentinurbanforestareas:acasestudyinnorthernItaly.

LandscUrbanPlan157:90–97

PinhoP,CorreiaO,LecoqM,MunziS,VasconcelosS,Gonc¸alvesP,

RebeloR,AntunesC,SilvaP,FreitasC,LopesN,Santos-Reis

M,BranquinhoC(2016)Evaluatinggreeninfrastructurein

urbanenvironmentsusingamulti-taxaandfunctionaldiversity

nRes147:601–610

PopekR,Gawron

´

skaH,WrochnaM,Gawron

´

skiSW,SæbøA(2013)

Particulatematteronfoliageof13woodyspecies:depositionon

Towardsanintegrativeapproachtoevaluatetheenvironmentalecosystemservicesprovidedby…1995

surfacesandphytostabilisationinwaxes–

Phytorem15:245–256

PuppimdeOliveiraJA,DollCNH,Moreno-Pen

˜

arandaR,BalabanO

(2014)environ-

er,Dordrecht,pp461–468

Pys

ˇ

ekP(1998)AlienandnativespeciesinCentralEuropeanurban

floras:ogr25:155–163

RenY,GeY,GuB,MinY,TaniA,ChangJ(2014)Roleof

managementstrategiesandenvironmentalfactorsindetermining

theemissionsofbiogenicvolatileorganiccompoundsfrom

nSciTechnol48:6237–6246

RosenfeldAH,RommJJ,AkbariH,PomerantzM(1998)Cool

communities:strategiesforheatislandmitigationandsmog

Build28:51–62

RoyS,ByrneJ,PickeringC(2012)Asystematicquantitativereview

ofurbantreebenefits,costs,andassessmentmethodsacross

orUrbanGreen

11:351–363

SaaroniH,AmorimJH,HiemstraJA,PearlmutterD(2018)Urban

GreenInfrastructureasatoolforurbanheatmitigation:survey

ofresearchmethodologiesandfindingsacrossdifferentclimatic

lim24:94–110

SadanandanKR,RheindtFE(2015)Geneticdiversityofatropical

rainforestunderstorybirdinanurbanfragmentedlandscape.

Condor117:447–459

SalmondJA,WilliamsDE,LaingG,KinghamS,DirksK,LongleyI,

HenshawGS(2013)Theinfluenceofvegetationonthe

horizontalandverticaldistributionofpollutantsinastreet

alEnviron443:287–298

SattlerT,BorcardD,ArlettazR,BontadinaF,LegendreP,Obrist

MK,MorettiM(2010)Spider,bee,andbirdcommunitiesin

citiesareshapedbyenvironmentalcontrolandhighstochastic-

y91:3343–3353

SattlerT,ObristMK,DuelliP,MorettiM(2011)Urbanarthropod

communities:addedvalueorjustablendofsurrounding

biodiversity?LandscUrbanPlan103:347–361

SeidelD,BuschG,KrauseB,BadeC,FesselC,KleinnC(2015)

Quantificationofbiomassproductionpotentialsfromtrees

outsideforests—rgy

Res8:1344–1351

Shashua-BarL,PearlmutterD,ErellE(2011)Theinfluenceoftrees

andgrassonoutdoorthermalcomfortinahot-aridenvironment.

IntJClimatol31:1498–1506

ShwartzA,Turbe

´

A,SimonL,JulliardR(2014)Enhancingurban

biodiversityanditsinfluenceoncity-dwellers:anexperiment.

BiolConserv171:82–90

SicardP,AugustaitisA,BelyazidS,CalfapietraC,DeMarcoA,Fenn

M,GrulkeN,HeS,MatyssekR,SerengilY,WieserG,Paoletti

E(2016)Globaltopicsandnovelapproachesinthestudyofair

pollution,nPollut

213:977–987

SicardP,AgathokleousE,AraminieneV,CarrariE,HoshikaY,De

MarcoA,PaolettiE(2018)Shouldweseeurbantreesas

effectivesolutionstoreduceincreasingozonelevelsincities?

EnvironPollut243:163–176

SpeightMCD(1989)Saproxylicinvertebratesandtheirconservation.

CouncilofEurope,Natureandenvironmentseries42,pp1–81.

Strasbourg

StottI,SogaM,IngerR,GastonKJ(2015)Landsparingiscrucialfor

colEnviron13:387–393

SuscaT,GaffinSR,Dell’OssoGR(2011)Positiveeffectsof

vegetation:nPollut

159:2119–2126

TassickerA,KuttA,VanderduysEMS(2006)Theeffectsof

vegetationstructureonthebirdsinatropicalsavannawoodland

J28:139–152

TaylorPD,FahrigL,WithKA(2006)Landscapeconnectivity:a

:CrooksKR,SanjayanM(eds)

dgeUniversityPress,New

York,pp29–43

TEEB,TheEconomicsofEcosystemsandBiodiversity(2010)The

economicsofecosystemsandbiodiversity:ecologicaland

can,London

TerhoM,HallakselaAM(2008)Decaycharacteristicsofhazardous

Tilia,Betula,andAcertreesfelledbymunicipalurbantree

ry81:151–159

TerzaghiE,WildE,ZachelloG,CeraboliniBEL,JonesKC,Di

GuardaA(2013)Forestfilterseffects:roleofleavesin

capturing/releasingairparticulatematteranditsassociated

nviron74:378–384

ThorntonPE,LawBE,GholzHL,ClarkKL,FalgeE,EllsworthDS,

GoldsteinAH,MonsonRK,HollingerD,FalkM,ChenJ,Sparks

JP(2002)Modelingandmeasuringtheeffectsofdisturbance

historyandclimateoncarbonandwaterbudgetsinevergreen

orMeteorol113:185–222

TicktinT,ShackletonC(2011)Harvestingnon-timberforestproducts

sustainably:-timberforest

er,BerlinHeidelberg,

pp149–169

TiwaryA,KumarP(2014)Impactevaluationofgreen–grey

infrastructureinteractiononbuilt-spaceintegrity:anemerging

alEnviron

487:350–360

TiwaryA,WilliamsID,HeidrichO,NamdeoA,BandaruV,

CalfapietraC(2016)Developmentofmulti-functionalstreets-

capegreeninfrastructureusingaperformanceindexapproach.

EnvironPollut208:209–220

TreschS,FreyD,LeBayonRC,ZanettaA,RascheF,FliessbachA,

MorettiM(2019)Litterdecompositiondrivenbysoilfaunaand

alEnviron

658:1614–1629

TurriniT,KnopE(2015)Alandscapeecologyapproachidentifies

angeBiol

21:1652–1667

UnitedNations(2018)Worldurbanizationprospects:the2018

:///

wup/Publications/Files/ed17

Oct2018

VandekerkhoveK,ThomaesAB,JonssonG(2013)Connectivityand

fragmentation:islandbiogeographyandmetapopulationapplied

:KrausD,KrummF(eds)Integrative

approachesasanopportunityfortheconservationofforest

anForestInstitute,Freiburg

VergnesA,ViolIL,ClergeauP(2012)Greencorridorsinurban

landscapesaffectthearthropodcommunitiesofdomestic

nserv145:171–178

Vidal-BeaudetL,Forget-CaubelV,GrosbelletC(2015)Favourstreet

treerootgrowthwithhighsuppliesoforganicmatterinduces

rt1099:943–950

VilharU,Simonc

ˇ

ic

ˇ

P(2013)Identificationofkeyindicatorsfor

drinkingwaterprotectionservicesintheurbanforestsof

-eastEurFor3:103–113

VosPEJ,MaiheuB,VankerkomJ,JanssenS(2013)Improvinglocal

airqualityincities:totreeornottotree?EnvironPollut

183:113–122

Vuletic

´

D,PosavecS,KrajterS,Paladinic

´

E(2010)Paymentsfor

environmentalservices(PES)inCroatia–publicandprofes-

-eastEurFor

1:51–98

WangWJ,ZhangB,XiaoL,ZhouW,WangHM,HeXY(2018)

Decouplingforestcharacteristicsandbackgroundconditionsto

123

1996

explainurban-ruralvariationsofmultiplemicroclimateregula-

6:e5450

WoodburyPB,SmithJE,HeathLS(2007)Carbonsequestrationin

lManag

241:14–27

WrightIJ,ReichPB,WestobyM,AckerlyDD,BaruchZ,BongersF,

Cavender-BaresJ,ChapinT,CornelissenJHC,DiemerM,

FlexasJ,GarnierE,GroomPK,GuliasJ,HikosakaK,Lamont

BB,LeeT,LeeW,LuskC,MidgleyJJ,NavasML,Niinemets

¨

,OleksynJ,OsadaN,PoorterH,PootP,PriorL,PyankovVI,U

RoumetC,ThomasSC,TjoelkerMG,VeneklaasE,VillarR

(2004)

428:821–827

WuJ,LiN,ChenZ,YuS(2010)TheeffectofCO

2

sequestrationand

O

2

releaseofurbanvegetationinShenzhenspecialzone.

detal.

ZhongshanDaxueXuebao/ActaScientiarumNatraliumUniver-

sitatisSunyatseni49:86–92

ZielloC,SparksTH,EstrellaN,BelmonteJ,BergmannKC,Bucher

´

nC,GehrigR,E,BrighettiMA,DamialisA,DetandtM,Gala

´

rrezBustilloAM,Hallsdo

´

ttirM,Kockhans-GrewlingL,Gutie

`

ldyA,Sa

´

nchezA,BiedaMC,DeLinaresC,MyszkowskaD,Pa

SmithM,ThibaudonM,TravagliniA,UruskaA,Valencia-

BarreraRM,VokouD,WachterR,deWegerLA,MenzelA

(2012)

One7:1–8

Publisher’sNoteSpringerNatureremainsneutralwithregardto

jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.

123


发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1714078357a2376774.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信