I have a pandas DataFrame with a column like:
0
1
1
2
2
3
4
5
5
0
0
0
I would like to leave any leading zeros, but ffill to replace the trailing zeros with one greater than the previous, nonzero value. In this case, I'd like the output to be:
0
1
1
2
2
3
4
5
5
6
6
6
How can I go about doing this?
I have a pandas DataFrame with a column like:
0
1
1
2
2
3
4
5
5
0
0
0
I would like to leave any leading zeros, but ffill to replace the trailing zeros with one greater than the previous, nonzero value. In this case, I'd like the output to be:
0
1
1
2
2
3
4
5
5
6
6
6
How can I go about doing this?
Share Improve this question asked Nov 19, 2024 at 15:55 Aaron HorowitzAaron Horowitz 637 bronze badges 2- Do you have any other edge cases? Or is the column always zero from the last non zero value? – Tom McLean Commented Nov 19, 2024 at 16:02
- So far this is my edge case. I've been able to handle any others without much issue. Mozway's answer works for my needs for now, but I'll update if I run into any edge cases that it can't handle. – Aaron Horowitz Commented Nov 19, 2024 at 16:09
1 Answer
Reset to default 2You could mask
, increment and ffill
:
m = df['col'].eq(0)
s = df['col'].mask(m)
df['out'] = s.fillna(s.add(1).ffill().fillna(0)).convert_dtypes()
Or, if you really want to only target the trailing zeros:
df['out'] = df['col'].mask(df['col'].eq(0)[::-1].cummin(), df['col'].max()+1)
Output:
col out
0 0 0
1 1 1
2 1 1
3 2 2
4 2 2
5 3 3
6 4 4
7 5 5
8 5 5
9 0 6
10 0 6
11 0 6
Intermediates (first approach):
col out m s s.add(1) .ffill() .fillna(0)
0 0 0 True NaN NaN NaN 0.0
1 1 1 False 1.0 2.0 2.0 2.0
2 1 1 False 1.0 2.0 2.0 2.0
3 2 2 False 2.0 3.0 3.0 3.0
4 2 2 False 2.0 3.0 3.0 3.0
5 3 3 False 3.0 4.0 4.0 4.0
6 4 4 False 4.0 5.0 5.0 5.0
7 5 5 False 5.0 6.0 6.0 6.0
8 5 5 False 5.0 6.0 6.0 6.0
9 0 6 True NaN NaN 6.0 6.0
10 0 6 True NaN NaN 6.0 6.0
11 0 6 True NaN NaN 6.0 6.0
Intermediates (second approach):
col out m s df['col'].eq(0) [::-1].cummin()
0 0 0 True NaN True False
1 1 1 False 1.0 False False
2 1 1 False 1.0 False False
3 2 2 False 2.0 False False
4 2 2 False 2.0 False False
5 3 3 False 3.0 False False
6 4 4 False 4.0 False False
7 5 5 False 5.0 False False
8 5 5 False 5.0 False False
9 0 6 True NaN True True
10 0 6 True NaN True True
11 0 6 True NaN True True
applying per group:
Assuming a group LOT_ID
and the target column STEP_NUMBER
:
df['out'] = (df.groupby('LOT_ID')['STEP_NUMBER']
.transform(lambda x: x.mask(x.eq(0)[::-1].cummin(), x.max()+1))
)
发布者:admin,转转请注明出处:http://www.yc00.com/questions/1742416356a4439816.html
评论列表(0条)