血压变异性与脑小血管病

血压变异性与脑小血管病


2024年2月21日发(作者:)

• 926 •国际脑血管病杂志 2020

年丨2

月第 28

卷第 12

期 Int J Cerebrovasc Dis,December 2020, Vol. 28, No. 12•综述•血压变异性与脑小血管病段雅鑫12 裴晗蕾2'3 成斯琪2'3 赵岩2'3吕佩源1华北理工大学研究生学院,唐山 063210;2河北省人民医院神经内科,石家庄

050051 ;3河北医科大学研究生学院,石家庄050017

通信作者:吕佩源,Email:peiyuanlu2@【摘要】脑小血管病(cerebral small vessel disease,CSVD)指各种病因引起的脑小血管病变所致

的一系列临床、影像学和病理综合征,是导致认知功能损害和痴呆的主要原因。血压变异性是血压在

一定时间内波动的程度。越来越多的证据表明血压变异性与CSVD有关,而且后者可能是将血压变

异性与认知损害联系起来的重要中介之一。文章对血压变异性与CSVD的各种影像学表型及总体负

荷的相关性进行了综述。【关键词】脑小血管疾病;磁共振成像;血压;高血压;认知障碍

DOI

: 10.3760/.1673^165.2020.12.009Blood pressure variability and cerebral small vessel diseaseDuan Yaxin1"2,Pei Hanlei2*3, Cheng Siqi2>3, Zhao Yan2J, Lyu Peiyuanl<2>3'Graduate School of North China University of Science and Technology, Tangshan 063210, China;

Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; ^Graduate School of Hebei

Medicd University, Shijiazhuang 050017, China

Corresponding author: Lyu Peiyuan, Email:******************Cerebral small vessel disease (CSVD) refers to a series of clinical, imaging and pathological

syndromes of CSVD caused by various causes, which is the main cause of cognitive impairment and

dementia. Blood pressure variability is the degree to which blood pressure fluctuates over a certain period of

time. More and more evidence has shown that blood pressure variability is associated with CSVD, and the

latter may be one of the important mediators to link blood pressure variability with cognitive impairment.

This article reviews the correlation between blood pressure variability and various imaging phenotypes and

overall load of CSVD.【Key words】 Cerebral small vessel diseases; Magnetic resonance imaging; Blood pressure; F^pertension;

Cognition disordersDOI

: 10.3760/c ma.j. issn. 1673 -4165.2020.12.009【Abstract】

脑小血管病(cerebral small vessel disease,

CSVD)是各种原因引起脑小动脉、微动脉、毛细血管、

微静脉及小静脉病变而导致的临床、影像学和病理综

合征[1],其主要影像学表型包括脑白质高信号(white

matter hyperintensities,WMHs )、脑微出血(cerebral

microbleeds,CMBs)、腔隙性梗死(lacunar infarction,

LI)和血管周围间隙扩大(enlarged perivascular

space,EPVS)[2]。CSVD可导致卒中、认知损害、痴

呆、精神障碍、步态异常及尿便障碍等[3],认知损害

多起病隐匿且进展缓慢,主要表现为执行功能、反应

和处理速度下降[4]。流行病学研究显示,约80%的

65岁以上老年人和所有90岁以上老年人均有CSVD的临床或影像学表现[5],给社会和家庭带来巨大负

担。因此,对亚临床CSVD的早期诊断、预防和治疗

十分重要,有可能起到预防认知损害的作用。然而,

CSVD的发病机制尚不完全清楚。高血压是CSVD的重要可干预危险因素[6]。

在高血压的早期阶段,患者可能只表现为正常血压

节律消失、血压变异性(blood pressure variability,

BPV)增高,而血压并未明显升高。BPV指血压在一

定时间内波动的程度,其评价指标包括血压变异标

准差(standard deviation, SD )、血压变异系数

(coefficient of variability, CV)、平均连续变异度

(average successive variability, ASV)和平均真实变

国际脑血管病杂志 2020

年 12

月第 28

卷第 12

期丨nt J Cerebrovasc Dis. December 2020, Vol. 28. No. 12.927 •异性(average real variability, ARV)等,在临床研究中

以SD和CV最为常用。BPV增高与多种机制有关,

包括中枢交感神经过度激活、肾素-血管紧张

素-醛固酮系统变化、动脉血管紧张度增高、血管活

性物质产生以及环境和心理状况等。既往研究表

明,BPV是心脑血管病的独立危险因素[71;与偶测

血压相比,BPV更能预测靶器官的损害情况[8] ,BPV

增高会增高发生认知损害和痴呆的风险W。因此,

BPV可能与发生于认知损害和痴呆多年前的亚临床

脑血管损伤相关。越来越多的研究证实了 BPV与

CSVD的相关性[_],后者可能是将BPV与认知损

害联系起来的重要中介之一[12]。监测和干预BPV

可能有助于CSVD的早期诊断、预防和治疗,进而预

防认知损害和痴呆的发生。现就BPV与CSVD的

各种主要影像学表型及总体负荷的相关性进行综

述,并阐述CSVD与认知损害的关系。1

BPV 与

CSVD1.1

BPV 与

WMHsWMHs又称脑白质疏松或脑白质病变,是指由

血管性病因所致白质脱髓鞘病变的影像学描述,是

CSVD最突出的表现形式[13]。WMHs在MRI图像

中表现为双侧基本对称的T,等信号或低信号,T2

和液体衰减反转恢复序列(fluid-attenuated

inversion

recovery,

FLAIR)高信号m。多项研究表明,BPV与

WMHs的发生、进展及其所致的认知损害相关。一

项包括2 796例老年人的meta分析表明,收缩压

BPV增高(以多种方式量化,首选CV和SD)与

CSVD的发生或进展风险相关,尤其是较高的WMHs

负荷w。Chen等[14]的研究显示,在亚洲老年原发

性高血压患者中,较高的24

h收缩压SD与WMHs

负荷增加存在显著独立相关性。另有学者研究表

明,在校正潜在混杂因素后,血压升高程度是WMHs

进展的重要预测因素[15〜。另一项研究对122例年

龄70 ~78岁的社区高血压居民进行为期3年和6年

的随访发现,访视收缩压CV和脉压CV增高与

WMHs进展相关,而舒张压CV与WMHs进展无

关;作者认为,BPV主要与新发WMHs病灶的进展

相关,而不是已有病灶U7]。以上研究表明,收缩压

BPV与WMHs密切相关,而舒张压BPV与其无关,

并提示降低BPV的干预措施可能对WMHs负荷较

低的人群更有效,但其结论尚需大样本临床研究进

一步证实。此外,Liu等h8]对232例80岁以上老年人进行的研究表明,收缩压CV增高不仅会加剧

WMHs的进展,而且与简易智能精神状态检查量表

(Mini-Mental State Examination, MMSE)评分降低有

关。一项队列研究对1 275例无痴呆或卒中的老年

人群进行的分析显示,收缩压CV通过与晚发性抑

郁及总WMHs体积间的相互作用与认知功能下降

相关,而深部WMHs比脑室旁WMHs更显著[19],提

示BPV对WMHs的影响可能与WMHs的分布有

关,BPV与WHMs的区域相关性仍然有待进一步

探讨。WMHs的发生和发展与认知损害有关,其引起

的认知功能下降存在剂量-效应关系[2°],且与病变

部位有关。一项meta分析显示,WMHs进展会导致

更严重的认知损害,特別是在注意力和执行能力方

面[21]。目前认为,脑室旁和额叶附近的WMHs与

执行功能以及处理速度下降相关,后角周围、顶叶和

颞叶的WMHs与记忆减退相关[22],而较严重的顶

叶和枕叶WMHs可预测轻度认知损害进展为阿尔

茨海默病的风险[231.2 BPV 与 CMBsCMBs是由漏出血管外的含铁血黄素或吞噬含

铁血黄素的巨噬细胞形成,是CSVD的又一重要影

像学征象[24],在T/加权成像或磁敏感加权成像中

表现为边界清楚的圆形或卵圆形均质低信号或信号

缺失病灶,直径2〜10 mm。根据具体部位,可分为

脑叶CMBs和深部CMBs。目前的研究主要集中于

BPV增高与CMBs风险及部位的相关性方面。一项

大样本前瞻性研究显示,长时收缩压及舒张压SD

增高与CMBs的发生风险有关,且独立于平均血压

水平[25]。Staals等[26]研究发现,短时收缩压及舒张

压SD与深部及脑干CMBs密切相关,而与单纯脑

叶CMBs无关。Liu等[27]对720例缺血性卒中患者

进行的随访显长时收缩压SD、CV和ASV是深

部及幕下CMBs进展的独立危险因素,长时舒张压

SD、CV和ASV与深部CMBs的进展独立相关,而

收缩压及舒张压BPV均与脑叶CMBs进展无关。

BPV与不同部位CMBs的相关性存在差异可能是不

同的血管解剖机制所致,深部及幕下区域均由穿支

动脉供血,后者多由大血管直接发出,易受血压波动

和血流冲击的影响,而脑叶区存在很多相对较长的

分支小血管,能缓解动脉压的冲击力[28]。既往研究表明,CMBs可增高认知损害和痴呆

• 928 •国际脑血管病杂志 2020

年 12

月第 28

卷第 12

期 Int J Cerebrovasc Dis, December 2020, Vol. 28. No. 12的风险[W],并且与CMBS的数量和部位有关[M]。

一周围充满组织间液的正常解剖结构[44i。其在MRI

轴位图像上表现为直径矣2 mm的圆形、管状或线形

T,和FLAIR低信号以及T2高信号[45],是脑组织间

液交换和代谢物清除的重要通道[461。PVS会随其

内组织间液的增多而扩张,形成EPVS,好发于基底

项基于社区健康人群的前瞻性研究显示,CMBs

数量与认知损害风险呈正相关;脑叶CMBs与执行

功能、信息处理速度和记忆能力下降相关,而其他部

位CMBs与信息处理速度和运动速度下降相关[31]。

Chung等[32]研究发现,脑叶CMBs与整体认知功能

和视空间执行功能下降相关,而深部和幕下CMBs

与认知损害无关。一项meta分析表明,额叶、基底

节和丘脑CMBs与认知损害有关,可能是因为这些

区域的CMBs破坏了与认知功能密切相关的额

叶-皮质下神经环路所致[33] 〇1.3 BPV 与 LILI是弥散加权成像和FLAIR序列上呈高信号

改变的直径<15 mm的梗死灶,多位于深部穿支动

脉供血区[3435],大部分表现为规则圆形,部分呈不

规则形。Feng等1361认为,不规则形LI是由部分小

病灶合并而成,并提出24 h收缩压SD是不规则形

LI的独立危险因素。Filomena等[37]对487例无症

状高血压患者进行的队列研究表明,使用24 h动态

血压监测定义的收缩压ARV与LI存在显著相关

性,可作为CSVD的独立预测指标。Lau等[38]对

281例LI患者进行随访发现,访视收缩压SD可预

测U患者的心血管病死率和长期全因死亡风险。

亦有研究表明,收缩压SD、CV、ARV和舒张压SD、

CV、ARV增高与LI的进展相关,尤其是在基线时患

有LI的个体中;而且,收缩期ARV增高可预测

CSVD的进展及其相关认知功能下降[||]。Lee等[39]

进行的回顾性研究显示,急性L1患者人院时血压

SD和CV增高可能预示认知转归不良,尤其是额叶

功能障碍。尽管LI常无明显临床症状,但复发率较高,而

且是卒中后认知损害及血管性痴呆的重要预测因

素14(0。一项meta分析显示,尽管LI体积很小,但

约1/3的LI患者在4年后会出现认知功能下降[4U。

LI相关的认知损害包括语言、执行功能、记忆力、注

意力、视空间能力及信息处理速度等多个认知

域1421。多发性无症状LI与轻度神经心理异常有

关,特別是执行功能(语义流利)障碍和语言记忆延

迟1431 〇1.4 BPV 与 EPVS血管周围间隙(perivascular spaces, PVS)亦称

Virc how - Rob in间隙,是指硕内穿支小动脉和小静脉节和半卵圆中心|47]。EPVS在MRI上表现为直径

3 ~ 15 mm的点状或线性脑脊液样信号[48]。一些研

究探讨了 BPV与不同部位EPVS的相关性。

Yang等[46]对健康体检者进行的一项前瞻性研究表

明,在校正血压后,24 h、日间和夜间收缩压SD和

CV、舒张压CV及夜间舒张压SD与基底节EPVS

严重程度呈显著正相关,但与白质EPVS严重程度

无关。该结论与高血压对EPVS的易感部位相同。

Klarenbeek等[491研究发现,动态血压水平与基底节

EPVS存在显著独立相关性,而与半卵圆中心EPVS

无关。目前尚无法解释这一现象,可能是由于不同

部位EPVS的解剖结构及发病机制不同所致。基底

节中的动脉被2层不同的软脑膜包围,不同层面由

血管周围空间分隔,该空间与蛛网膜下腔中动脉周

围的血管周围空间连续;相比之下,大脑皮质的动脉

周围只有单层软脑膜,渗透到白质中。此外,年龄、

高血压、炎症水平以及WMHs负荷与基底节EPVS

的相关性均要强于白质EPVS15M1]。Huijts等[47]对189例CSVD高危风险患者进行

的研究显示,基底节EPVS与CSVD相关性认知损

害有关,特别是信息处理速度下降,而半卵圆中心

EPVS与认知损害无关。一项meta分析显示,中脑、

海马、基底节和半卵圆中心EPVS的总数量与认知

损害无关[52]。由此可见,EPVS部位可能与认知损

害相关,而EPVS数量可能与认知损害无显著相

关性。1.5 BPV与CSVD总体负担CSVD的不同影像学表型可能具有相似的病理

学特征和共同的发病机制[53]。虽然这些影像学改

变可单独存在,但大多数患者往往同时存在2种及

以上不同的影像学改变。近年来,有学者提出了基

于MR丨的CSVD总体负担评分的概念,将CSVD的

不同MRI表型组合为一个整体,用于评估CSVD造

成的总体脑功能损害程度[54'~。该评分与信息处

理速度和整体认知功能下降显著相关,累积的脑损

伤伴随着更严重的认知损害[53]。Yang等[56]对

251例平均年龄为68岁的健康体检者进行的研究显

国际脑血管病杂志 2020

年 12

月第 28

卷第 12

期 Int J Cerebrovasc Dis,December 2020, Vol. 28, No. 12• 929 •示,收缩压SD、CV以及加权CV与CSVD总体负担

呈正相关,而舒张压SD、CV以及加权CV与CSVD

总体负担无显著相关性。一项meta分析表明,收缩

压和舒张压BPV增高均与CSVD发生率增高相关,

但收缩压BPV导致CSVD的可能性要高于舒张压

BPV[57]。以上研究提示,收缩压BPV对CSVD的影

响更大,这可能是由于收缩压对血管危险因素的影

响大于舒张压[56]。然而,Zhou等[58]发现短期至中

期收缩压和舒张压BPV(即访视血压SD、24 h ARV

和7 d血压SD)均与CSVD总体负荷评分无关。

de Heus等[59]研究发现,虽然收缩压CV与CSVD

总体负担相关,但分别计算清晨和傍晚的收缩压CV

时,仅发现傍晚BPV与CSVD总体负担存在显著相

关性。因此,收缩压和舒张压BPV以及不同时段

BPV对CSVD的影响仍然有待进一步研究。2

BPV高可能引起交感神经兴奋性增强,激活肾素-血管

紧张素-醛固酮系统,使血管紧张素n及醛固酮水

平升高。血管紧张素n可能诱发血管痉挛,进一步

加重血流动力学损害;而醛固酮可能会通过减少一

氧化氮的产生及释放引起ED及血管平滑肌重塑,

导致神经血管单元损伤和血脑屏障异常,继而造成

CSVD[7()_72]。另一方面,为了保证脑血流量的相对

稳定,脑血管自动调节功能会限制低血压时的灌注

不足和高血压状态下的高灌注,而BPV增高可能会

增高脑组织对微血管功能障碍的敏感性,从而导致

ED[73]。此外,剪应力异常也能直接造成血管结构

损伤和ED[68],而ED引起的血管舒张和血管收缩

物质的内皮依赖性合成受损可能反过来影响血压的

稳定性[8],形成恶性循环。2. 3缺血和低灌注有研究表明,BPV增高可能会增加血流波动并

抑制血流向小动脉的流动,导致脑小血管血流量减

少而受损[74]。收缩压的剧烈波动可引起低血压发

作,导致缺血和低灌注[75],而缺血和低灌注参与了

CSVD的发病机制[76]。与此同时,CSVD也可能是

BPV增高的原因之一,二者可能互为因果[56]。

CSVD皮质结构的神经退行性改变可能影响中枢自

主神经系统对血压的调节,从而使BPV增高[77]。

因此,BPV与CSVD的因果关系尚需更多的纵向数

据来阐明。3结语BPV与CSVD的各种影像学表型及总体负担

均密切相关,而各种CSVD影像学表型的存在均可

能导致认知功能下降。因此,监测和干预BPV可能

有助于CSVD的早期诊断、预防和治疗。然而,目前

关于BPV与CSVD相关性的研究多为横断面研究,

尚需更多纵向数据来阐明两者的因果关系。此外,

BPV增高在各种CSVD表型中的作用机制、不同

BPV评价指标对各种CSVD表型的不同预测作用、

与BPV增大相关的CSVD对认知功能的影响、BPV

增高的患者是否有必要进行头颅MRI筛查CSVD

的存在、CSVD患者是否应将降低BPV纳人到血压

管理等问题都需要进一步研究。利益冲突所有作者均声明不存在利益冲突

参考文献[1 ] Teng Z, Dong Y, Zhang D, et al. Cerebral small vessel disease与CSVD相关的可能机制BPV增高引起CSVD的机制尚不完全清楚。

BPV增高可能通过血流动力学和切应力变化、血管

内皮功能障碍(endothelial dysfunction,ED)、缺血和

低灌注等因素促进CSVD的发生和发展。2. 1血流动力学和剪应力变化首先,BPV增高引起的压力及血流量变化会直

接损害脑微循环,还会诱导脑微血管结构重塑[6〇]。

其次,BPV增高可能导致血流动力学不稳定,并在血

管壁上产生较大甚至振荡的剪应力[61]。剪应力异

常会促进单核细胞与血管内皮细胞的黏附及相互作

用,进而触发炎症反应,导致血管壁破坏和脑微血管

损伤,引起CSVD162#。此外,剪应力异常会损伤血

管内皮细胞的结构和功能,引起血管内膜-中膜增

厚和动脉粥样硬化,导致动脉僵硬度增高[64],而后

者与CSVD风险呈正相关联系。动脉僵硬度增高会

直接损伤血管结构并降低脑动脉弹性,导致负载流

量,从而引起脑小血管损伤。动脉僵硬度增高也会

加速脉冲波,引起脑血管搏动性增强,进一步增加血

压波动,形成恶性循环[6〇'65]。2.2 ED有研究楗示,BPV与血管平滑肌及内皮细胞功

能呈负相关[66]。Liang等[67]对血压正常的中年受

试者进行的研究显示,BPV增高与内皮依赖性血管

舒张功能降低存在独立相关性。Diaz等[68]进一步

证实,BPV增高可导致小血管内皮功能受损,而ED

是CSVD的重要发病机制之一-方面,BPV增

• 930 •国P示月齑血符病杂志 2020

年 12

月第 28

卷第 12

期 Int J Cerebrovasc Pis, December 2020, Vol. 28, No. 12and post-stroke cognitive impairment[ J ]. Int J Neurosci, 2017,

127(9): 824-830. DOI: 10.1080/00207454.2016.1261291.[2] Wardlaw JM, Smith EE, Biessels GJ, et al; STandards for

Reporting Vascular changes on nEuroimaging (STRIVE vl )•

Neuroimaging standards for research into small vessel disease

and its contribution to ageing and neurodegeneration [ J ]. Lancet

Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474^422 (13)

70124-8.[3] Li Q, Yang Y, Reis C, et al. Cerebral small vessel disease[ J ].

CeU Transplant, 2018, 27 ( 12 ): 1711-1722. DOI: 10.1177/

5148.[4] Chen X, Wang J, Shan Y, et al. Cerebral small vessel disease:

[18] Liu Z, Zhao Y, Zhang H, et al. Excessive variability in systolic

blood pressure that is self-measured at home exacerbates the

progression of brain white matter lesbns and cognitive impairment

in the oldest old[j]. Hypertens Res, 2016, 39(4): 245-253. DOI: 10.

1038/hr2015.135.[19] Tully PJ, Debette S, Tzourio C. The association between systolic

blood pressure variability with depression, cognitive decline and

white matter hyperintensities: the 3C Dijon MRI study[ J]. Psychol

Med, 2018, 48(9): 1444-1453. EX3I: 10.1017/S2756.[20] Prins ND, Scheltens P. White matter hyperintensities, cognitive

impairment and dementia: an update[j]. Nat Rev Neurol, 2015,

1 1(3): 157-165. DOI: 10.1038/maging markers and clinical implication [ J ]. J Neurol,

2019, 266(10): 2347-2362. DOI: 10.1007/s00415-018-9077-3.[5] Haffner C, Malik R, Dichgans M. Genetic factors in cerebral

small vessel disease and their impact on stroke and dementia[ J ].

J Cereb Blood Flow Metab, 2016, 36(1): 158-171. DOI: 10.1038/

jcbfm.2015.71.[6] Meissner A. Hypertension and the brain: a risk factor for more

than heart disease[ J]. Cerebrovasc Dis, 2016, 42(3-4): 255-262.

DOI: 10.1159/000446082.[7] Chi XL, Guo ZR, Xu SL, et al. Doubts and difficulties in studying

blood pressure variability [ J ]. Eur Rev Med Pharmacol Sci, 2016,

20(9): 1819-1828.[8] Vishram JK, Dahlof B, Devereux RB, et al. Blood pressure variability

predicts cardiovascular events independently of traditional

cardiovascular risk factors and target organ damage: a LIFE

substudy[J]. J Hypertens, 2015, 33(12): 2422-2430. DOI: 10.1097/HJ H.0739.[9] Ma Y, Song A, Viswanathan A, et al. Blood pressure variability

and cerebral small vessel disease: a systematic review and meta­analysis of population-based cohorts [ J ]. Stroke, 2020, 51(1):

82-89. DOI: 10.1161/STROKEAHA. 119.026739.[10] Klarenbeek P, van Oostenbrugge RJ, Rouhl RP, et al. Ambulatory

blood pressure in patients with lacunar stroke: association with total

MRI burden of cerebral small vessel disease [J], Stroke, 2013,

44(11): 2995-2999. DOI: 10.1161/S丁ROKEAH/U 13.002545.[11] Yamaguchi Y, Wada M, Sato H, et al. Impact of ambulatory

blood pressure variability on cerebral small vessel disease

progression and cognitive decline in community-based elderly

Japanese[j]. Am J Hypertens, 2014, 27(10): 1257-1267. DOI:

10.1093/ajh/hpu045.[12] Sabayan B, Wijsman LW, Foster-Dingley JC, et al. Association of

visit-to-visit variability in blood pressure with cognitive function in

old age: prospective cohort study[j]. BMJ, 2013, 347: f4600. EK)I:

10.1136/bmj.f4600.[13] Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic

cerebral small vessel disease: insights from neuroimaging [ J ].

Lancet Neurol, 2013, 12 (5): 483-497. DOI: 10.1016/S1474-

4422(13)70060-7.[14] Chen X, Zhu Y, Geng S, et al. Association of blood pressure

variability and intima-media thickness with white matter

hyperintensities in hypertensive patients [ J ]. Front Aging

Neurosci, 2019, 11: 192. DOI: 10.3389/fnagi.2019.00192.[15 ] Godin O. Tzourio C, Maillard P, et al. Antihypertensive treatment

and change in blood pressure are associated with the progression of

white matter lesion volumes: the Three-City

(3C)-Dijon Magnetic

Resonance Imaging Study [J]. Circulation, 2011, 123(3): 266-273.

DOI: 10.1161/aRCULATIONAHA.110.%1052.[16] Matsumoto A, Satoh M, Kikuya M, et al. Day-to-day variability

in home blood pressure is associated with cognitive decline: the

Ohasama study [J]. Hypertension, 2014, 63(6): 1333-1338. DOI:

10.1161/HYPERTENSIONAHA.l 13.01819.[17] van Middelaar T, Richard E, Moll van Charante EP, et al. Visit-to-

visit blood pressure variability and progression of white matter

hyperintensities among older people with hypertension [ J ]. J Am

Med Dir Assoc,2019,20(9): . DOI: 10J016/2019.

(H.003.[21] Kloppenborg RP, Nederkoom PJ, Geerlings MI, et al. Presence

and progression of white matter hyperin tensities and cognition: a

meta-analysis [ J ]. Neurology, 2014, 82(23): 2127-2138. DOI:

10.1212 AVNL.0505.[22] Lampe L, Kharabian-Masouleh S, Kynast J, et al. Lesion location

matters: The relationships between white matter hyperintensities

on cognition in the healthy elderly [ J ]. J Cereb Blood Flow

Metab, 2019, 39(1): 36^3. DOI: 10.1177/0271678X17740501.[23] Tosto G, Zimmerman ME, Hamihon JL, et al; Alzheimer's Disease

Neuroimaging Initiative. The effect of white matter hyperintensities

on neurodegeneration in mild cognitive impairment [ J ]. Alzheimers

Dement, 2015, 11(12): 1510-1519. DOI: 10.1016/2015.05.014.[24] Schrag M, Greer DM. Clinical associations of cerebral microbleeds

on magnetic resonance neuroimaging[ J ]. J Stroke Cerebrovasc Dis,

2014, 23(10): 2489-2497. DOI: 10.1016/ecerebrovasdis2014.07.

006.[25] Brickman AM, Reitz C, Luchsinger JA, et al. Long-term blood

pressure fluctuation and cerebrovascular disease in an elderly cohort

[J]. Arch Neurol, 2010, 67(5): 564-569. DOI: 10.1001/archneurol.

2010.70.[26] Staals J, van Oostenbrugge RJ, Knottnerus IL, et al. Brain

microbleeds relate to higher ambulatory blood pressure levels in

first-ever lacunar stroke patients [ J ]. Stroke, 2009, 40 (10):

3264-3268. DOI: 10.1161/STROKEAHA. 109.558049.[27] Liu W, Liu R, Sun W, et al; CASISP Study Group. Different

impacts of blood pressure

vhi lability on the progression of cerebral

microbleeds and white mattu icsions[J]. Stroke, 2012,43(11):2916-

2922. DOI: 10.1161/STROKEAHA.112.658369.[28 ] Yakushiji Y. Cerebral microbleeds: detection, associations and

clinical implications[ J ]. Front Neurol Neurosci, 2015, 37:78-92.

DOI: 10.1159/000437115.[29] Ding J, Siguresson S, J6nsson PV, et al. Space and location of

cerebral microbleeds, cognitive decline, and dementia in the

community[j]. Neurology, 2017, 88(22): 2089-2097. DOI: 10.

1212 AVNL.3983.[30] Chai C, Wang Z, Fan L, et al. Increased number and distribution

of cerebral microblecds is a risk factor for cognitive dysfunction

in hemodialysis patients: a longitudinal study [ J ]. Medicine

(Baltimore), 2016, 95 (12 ): e2974. DOI: 10. 1097/MD.

2974.[31] Akoudad S, Wolters FJ, Viswanathan A, et al. Association of

cerebral microbleeds with cognitive decline and dementia I J ].

JAMA Neurol, 2016, 73(8): 934-943. DOI: 10.1001/jamaneurol.

2016.1017.[32 ] Chung CP, Chou KH, Chen WT, et al. Strictly lobar cerebral

microbleeds are associated with cognitive impairment [ J ].

Stroke, 2016, 47(10): 2497-2502. DOI: 10.1161/STROKEAHA.

116.014166.[33 ] Lei C, Lin S, Tao W, et al. Association between cerebral microbleeds

and cognitive function: a systematic review [ J ]. J Neurol Neurosurg

Psychiatry, 2013, 84(6): 693-697. DOI: 10.1136/jnnp-2012-303948.[34] Li Y, Liu N, Huang Y, ct al. Risk factors for silent lacunar infarction

in patients with transient ischemic attack [J j. Med Sci Monit, 2016,

22:447^53. DOI: 10.12659/msm.895759.[35] Lv P, Jin H, Liu Y, et al. Comparison of risk factor between

lacunar stroke and large artery atherosclerosis stroke: A cross­

国际脑血管病杂志 2020

年 12

月第 28

卷第 12

期 Int J Cerebrovasc Dis, December 2020, Vol. 28, No. 12• 931 •sectional study in China[j]. PLoS One, 2016, 11(3): e0149605.

DOI: 10.1371 /.0149605.[36 ] Feng C, Xu Y, Hua T, et al. Irregularly shaped lacunar infarction:

risk factors and clinical significance [ J ]. Arq Neuropsiquiatr,

2013, 71(10): 769-773. DOI: 10.1590/0004-282X20130119.[37] Filomena J, Riba-Llena I, Vinyoles E, et al; ISSYS Investigators.

Short-term blood pressure variability relates to the presence of

subclinic al brain small vessel disease in primary hypertension

[J]. Hypertension, 2015, 66 (3): 634-640. DOI: 10.1161/

HYP ERTENSIONAHA.115.05440.[38 ] Lau KK, Wong YK, Chang RS, et al. Visit-to-visit systolic blood

pressure variability predicts all-cause and cardiovascular mortality

after lacunar infarct[j]. Eur J Neurol, 2014,21(2):319-325. DOI: 10.

llll/ene.12310.[39] Lee JH, Oh E, Oh MS, et al. Highly variable blood pressure as a

predictor of poor cognitive outcome in patients with acute lacunar

infarction[j]. Cogn Behav Neurol, 2014, 27(4): 189-198. DOI: 10.

1097/WNN.0040.[40] Rincon F, Wright CB. Current pathophysiological concepts in

cerebral small vessel disease[ J ]. Front Aging Neurosci, 2014, 6:

24. DOI: 10.3389/fnagi.2014.00024.[41 ] Makin SD, Turpin S, Dennis MS, et al. Cognitive impairment after

lacunar stroke: systematic review and meta-analysis of incidence,

prevalence and comparison with other stroke subtypes[ J]. J Neurol

Neurosurg Psychiatry, 2013, 84(8): 893-900. DOI: 10.1136/jnnp-2012-

303645.[42 ] Edwards JD, Jacova C, Sepehry AA, et al. A quantitative

systematic review of domain-specific cognitive impairment in

lacunar stroke[J]. Neurology, 2013, 80(3): 315-322. DOI: 10.

1212/WNL.0b013e31827deb85.[43] Blanco-Rojas L, Arboix A, Canovas D, et al. Cognitive profile in

patients with a first-ever lacunar infarct with and without silent

lacunes: a comparative study [J]. BMC Neurol, 2013,13: 203.

DOI: 10.1186/1471-2377-13-203.[44] Adams HH, Hilal S, Schwingenschuh P, et al. A priori collaboration

in population imaging: The Ltoiform Neuro-Imaging of Virchow-

Robin Spaces Enlargement consortium [ J ] • Alzheimers Dement

(Amst),2015, 1(4): 513-520. DOI: 10.1016/2015.10.004.[45] Potter GM, Doubal FN, Jackson CA, et al. Enlarged perivascular

spaces and cerebral small vessel disease[ J]. Int J Stroke, 2015,

10(3): 376-381. DOI: 10.1111/ijs.12054.[46] Yang S, Qin W, Yang L, et al. The relationship between ambulatory

blood pressure variability and enlarged perivascular spaces: a cross-

sectional study[j]. BMJ Open, 2017, 7(8): e015719. DOI: 10.1136/

bmjopen-2016-015719.[47 ] Huijts M, Duits A, Staals J, et al. Basal ganglia enlarged perivascular

spaces are linked to cognitive function in patients with cerebral

small vessel disease[J]. Out Neurovasc Res, 2014, 11(2): 136-141.

DOI: 102174/48.[48] Zhu YC, Dufouil C, Mazoyer B, et al. Frequency and location of

dilated Virchow-Robin spaces in elderly people: a population-

based 3D MR imaging study [J]. AJNR Am J Neuroradiol,

2011,32(4): 709-713. DOI: 10.3174/ajnr.A2366.[49] Klarenbeek P, van Oostenbrugge RJ, Lodder J, et al. Higher

ambulatory blood pressure relates to enlarged Virchow-Robin

spaces in first-ever lacunar stroke patients [J ]. J Neurol, 2013,

260(1): 115-121. DOI: 10.1007/s00415-012-6598-z.[50] Zhu YC, Tzourio C, Soumare A, et al. Severity of dilated Virchow-

Robin spaces is associated with age, blood pressure, and MRI

markers of small vessel disease: a population-based study [ J ].

Stroke, 2010, 41 (11): 2483-2490. DOI: 10.1161/STROKEAHA. 110.

591586.[51 ] Satizabal CL, Zhu YC, Dufouil C, et al. Inflammatory proteins

and the severity of dilated Virchow-Robin Spaces in the elderly

[J]. J Alzheimers Dis, 2013, 33(2): 323-328. DOI: 10.3233/

JAD-2012-120874.[52] Hilal S, Tan CS, Adams HHH, et al. Enlarged perivascular spaces

and cognition: A meta-analysis of 5 population-based studies [ J ].Neurology, 2018, 91 (9): e832-e842. DOI: 10. 1212/WNL.

6079.[53] Huijts M, Duits A, van Oostenbrugge RJ, et al. Accumulation of

MRI markers of cerebral small vessel disease is associated with

decreased cognitive function. A study in first-ever lacunar stroke

and hypertensive patients [ J ]. Front Aging Neurosci, 2013, 5:

72. DOI: 10.3389/fnagi.2013.00072.[54] Uiterwijk R, van Oostenbrugge RJ, Huijts M, et al. Total cerebral

small vessel disease MRI score is associated with cognitive decline

in executive function in patients with hypertension[J]. Front Aging

Neurosci, 2016, 8:301. DOI: 103389/fhagi2016.00301.[55] Banerjee G, Jang H, Kim HJ, et al. Total MRI small vessel

disease burden correlates with cognitive performance, cortical

atrophy, and network measures in a memory clinic population

[J]. J Alzheimers Dis, 2018, 63(4): 1485-1497. DOI: 10.3233/

J AD-170943.[56] Yang S, Yuan J, Qin W, et al. Twenty-four-hour ambulatory

blood pressure variability is associated with total magnetic

resonanceimagingburdenofcerebralsmall-vesseldisease[J」.

Clin Interv Aging, 2018, 13: 1419-1427. DOI: 10.2147/CIA.

S171261.[57] Tully PJ, Yano Y, Launer U, et al; Variability in Blood Pressure

and &ain Health Consortium; Variability in Blood Pressure and

&ain Health Consortium. Association between blood pressure

variability and cerebral small-vessel disease: a systematic review

and meta-analysis[ J]. J Am Heart Assoc, 2020, 9(1): eO 13841.

DOI: 10.1161/JAHA.l 19.013841.[58] Zhou TL, Rensma SP, van der Heide FCT, et al. Blood pressure

variability and microvascular dysfunction: the Maastricht Study

[J]. J Hypertens, 2020, 38(8): 1541-1550. DOI: 10.1097/HJH.

2444.[59] de Heus RAA, Reumers SFI, van der Have A, et al. Day-to-day

home blood pressure variability is associated with cerebral small

vessel disease burden in a memory clinic population [ J ] • J

Alzheimers Dis, 2020, 74(2): 463^72. DOI: 103233/JAD-191134.[60] van Sloten TT, Protogerou AD, Henry RM, et al. Association

between arterial stiffness, cerebral small vessel disease and

cognitive impairment: A systematic review and meta-analysis

[J]. Neurosci Biobehav Rev, 2015,53: 121-130. DOI: 10.1016/

rev.2015.03.011.[61 ] Cecchi E, Giglioli C, Valente S, et al. Role of hemodynamic shear

stress in cardiovascular disease [J]. Atherosclerosis, 2011, 214(2):

249-256. DOI: 10.1016/sclerosis2010.09.008.[62 ] Kroon J, Heemskerk N, Kalsbeek MJT, et al. Flow-induced

endothelial cell alignment requires the RhoGEF Trio as a scaffold

protein to polarize active Racl distribution [ J ]. Mol Biol Cell, 2017,

28(13): 1745-1753. DOI: 10.1091/mbc.E16~06~0389.[63 ] Li R, Cui J, Shen Y. Brain sex matters: estrogen in cognition and

Alzheimer's disease[J]. Mol Cell Endocrinol, 2014, 389(1-2):

13-21. DOI: 10.1016/.2013.12.018.[64] Muntner P, Shimbo D, Tonelli M, et al. The relationship between

visit-to-visit variability in systolic blood pressure and all-cause

mortality in the general population: findings from NHANES IE,

1988 to 1994[J]. Hypertension, 2011,57(2): 160-166. DOI: 10.

1161 /HYPERTENSION AHA. 110.162255.[65 ] Saji N, Toba K, Sakurai T. Cerebral small vessel disease and arterial

stiffness: Tsunami effect in the brain? [ J]. Pulse (Basel), 2016, 3(3-

4): 182-189. DOI: 10.1159/000443614.[66] Hodgson JM, Woodman RJ, Croft KD, et al. Relationships of

vascular function with measures of ambulatory blood pressure

variation[ J ]. Atherosclerosis, 2014, 233(1 ): 48-54. DOI: 10.

1016/sc lerosis .2013.12.026.[67] Liang M, Xu S, Luo S, et al. Correlation between ambulatory

blood pressure variability and vasodilator function in middle-aged

normotensive individuals [ J ]. Blood Press Monit, 2017, 22(6):

355-363. DOI: 10.1097/MBP.0267.[68] Diaz KM, Veerabhadrappa P, Kashem MA, et al. Relationship of

visit-to-visit and ambulatory blood pressure variability to vascular

• 932 •国际脑血管病杂志 2020

年 12

月第 28

卷第 12

期 Int J Cerebrovasc Dis,December 2020, Vol. 28, No. 12function in African Americans[ J]. Hypertens Res, 2012, 35(1):

38(4): 599-602. DOI: 10.1097/HJH.2339.55-61. DOI: 10.1038/hr.2011.135.[74] Mitchell GF, van Buchem MA, Sigurdsson S, et al. Arterial stiffness,

[69] Cuadrado-Godia E, Dwivedi P, Sharma S, et al. Cerebral small

pressure and flow pulsatility and brain structure and function: the

vessel disease: A review focusing on pathophysiology, biomarkers,

Age, Gene/Environment Susceptibility—Reykjavik study [ J ]. Brain,

and machine learning strategies [ J ]. J Stroke, 2018, 20(3): 302-320.

2011, 134(Pt 11): 3398-3407. DOI: 10.1093^ain/: 10i853/jos2017.02922.[75 ] Tully PJ, Qchiqach S, Pereira E, et al. Development and validation of

[70] Wardlaw JM. Hcx)d-brain barrier and cerebral small vessel disease a priori risk model for extensive white matter lesions in people age

[J]. J Neurol Sci, 2010, 299(1-2): 66-71. DOI: 10.1016/2010.08. 65 years or older: the Dijon MRI study[J]. BMJ Open, 2017, 7(12):

042.e018328. DOI: 10.1136/bmjopen-2017-018328.[71 ] Abbott NJ, Ronnback L, Ffansson E. Astrocyte-endothelial interactions

[76] Wong SM, Jansen JFA, Zhang CE, et al. Blood-brain barrier

at the blood-brain barrier[J]. Nat Rev Neurosci, 2006, 7(1): 41-

impairment and hypoperfusion are linked in cerebral small vessel

53. DOI: 10.1038/e[j]. Neurology, 2019, 92(15): el669-el677. DOI: 10.

[72] Eto M, Toba K, Akishita M, et al. Reduced endothelial vasomotor

1212/on and enhanced neointimal formation after vascular injury

[77] Convertino VA, Rickards CA, Ryan KL. Autonomic mechanisms

in a rat model of blood pressure lability [ J ]. Hypertens Res,

associated with heart rate and vasoconstrictor reserves [J]. Clin

2003, 26(12): 991-998. DOI: 10.1291/ Res, 2012, 22(3): 123-130. DOI: 10.1007/s 10286-011-

[73] Angeli F, Reboldi G, Verdecchia P. Blood pressure variability and of stroke in chronic kidney disease [J]. J Hypertens, 2020,(收稿日期:2020~06-22)•医学简讯•COVID-19患者的缺血性卒中发生率较低2019冠状病毒病(coronavirus disease 2019, COVID-19)对缺血性卒中发病的影响是一个备受关注的问

题,但迄今尚未在大样本观察性研究中得到证实。美国纽约州长岛卒中和脑动脉瘤中心的Bekelis等进行了

一项横断面研究,对COVID-19与卒中之间的关联进行了探讨。研究者对2020年1月至2020年4月期间从纽约州医疗系统中出院的患者进行了回顾性分析。采用混合

效应bgiAc回归分析和倾向匹配评分加权分析控制混杂因素并探讨COVID-19与缺血性卒中的相关性。应

用类似的技术评价并发COVID-19感染对卒中患者临床转归的影响。在24 808例出院患者中,2 513例(10. 1%)诊断为COVID-19,566例(0.2%)诊断为急性缺血性卒中。

COVID-19阳性患者发生卒中的概率仅为其他患者的1 /4 [优势比(odds ratio, 0/〇 0. 25,95%可信区间

(confidence interval, C/)0. 16 ~0. 40]。这种关联在所有年龄段患者中都是一致的。此外,上述结果还得到

敏感性分析(包括倾向得分加权回归模型)的进一步证实。合并严重急性呼吸综合征-冠状病毒-2(Severe

acute respiratory syndrome-coronavirus 2, SARS-CoV-2)感染的卒中患者病死率显著增高(0/? 10. 50,95% C/

3. 54〜31. 18),而且出院后转入康复机构有增高的趋势(0/? 2. 45,95% C/0.81〜1.25)。这项大样本横断面分析未能确定缺血性卒中与COVID-19之间存在正相关联系。但是,与COVID-19阴

性卒中患者相比,COVID-19阳性卒中患者的临床转归更差,病死率增高超过9倍。尽管无法从这项观察性

研究中得出明确结论,但并不支持对年轻成人COVID-19患者卒中发病率增高的担忧。原文出处:Stroke, 2020, 51(12): 3570-3576. DOl: 10.1161/STROKEAHA.120.031217.(李宏建)


发布者:admin,转转请注明出处:http://www.yc00.com/news/1708475244a1566669.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信