2024年4月23日发(作者:台式电脑怎么安装打印机)
Toappearinthe6th2004.
Multi-biometricsUsingFacialAppearance,ShapeandTemperature
inChen
ComputerScience&EngineeringDepartment
UniversityofNotreDame
NotreDame,IN46556U.S.A.
{kchang,kwb,flynn}@
Abstract
Wepresentresultsofthefirststudytoexamineindividual
andmulti-modalfacerecognitionusing2D,3Dandinfra-
nsorcap-
turesdifferentaspectsofhumanfacialfeatures;appearance
inintensityrepresentingsurfacereflectancefromalight
source,shapedatarepresentingdepthvaluesfromthecam-
era,andthepatternofheatemitted,-
ployadatabasecontainingagallerysetof127imagesand
aPCA-basedapproachtunedseparatelyfor2D,3DandIR,
wefindrank-onerecognitionratesof90.6%for2D,91.9%
for3Dand71.0%ingeachpairofmodal-
ities,wefindamulti-modalrank-onerecognitionrateof
98.7%for2D-3D,96.6%for2D-IRand98.0%for3D-IR.
Whenallthreemodalitiesarecombined,weobtain100%
ultsshowninthisstudyappeartosup-
porttheconclusionthatthepathtohigheraccuracyand
robustnessinbiometricsinvolvesuseofmultiplebiometrics
ratherthanthebestpossiblesensorandalgorithmforasin-
glebiometric.
uction
Faceisoneofthemostimportantandcommonlyusedbio-
metricsforidentificationduetoitsacceptability,universal-
ityandnon-intrusiveness[1].Theidentificationofthehu-
manfacein2Dhasbeeninvestigatedbymanyresearchers,
butrelativelyfewstudiesusingotheraspectsoffacialfea-
tureshavebeenreported.
Eachimagingmodalityhasitsownbenefitsandprob-
lemswhenappliedtofacerecognition.2Dimagesaregen-
ceived
benefitsfromusing3Drelativeto2Ddataincludelessvari-
1
ationobservedduetofactorssuchasmakeupandreduced
sensitivitytoilluminationchanges(eventhougha3Dsens-
ingoperationisinfluencedbytheillumination).Also,the
patternofheatemittedfromthehumanbody(face)may
effectivelybeconsideredasacharacteristicofeachindivid-
ual[2].Thispaperfirstaddressestheeffectivenessofeach
individualbiometricsource,usingaPCA-basedtechnique
toinvestigatetheidentificationaccuracyoftheapproach.
Then,weconsiderthecombinationofdifferentfacialfea-
thefirststudytoexaminethesethreeface
biometricsandtocomparethedifferentpairsoffacebio-
ougheachimagingmodalityhasitsown
advantagesanddisadvantagesdependingoncertaincircum-
stances,thereisoftensomeexpectationthat3Ddatashould
r,norigorousexperimen-
experimentsreportedinthisstudyareaimedat(1)testing
thehypothesisthatthereexistsasuperiorityofaccuracyfor
onebiometricoverotherbiometricsources,usingthePCA-
basedmethod,and(2)exploringwhetheracombinationof
2D,3DandIRfacedatamayprovidebetterperformance
ectofcombiningdif-
ferentbiometricsishowtocombineresultsprovidedby
individualsourceseffectivelyduringthedecisionprocess.
Manydifferentapproachescouldbeenvisionedforcom-
biningmultipletypesofbiometricinformation[3,4,5].In
general,theycanbethoughtofasoccurringattheimage
level,themetriclevel,study,we
term“multi-modalbiometrics”isusedheretorefertothe
useofdifferentsensortypeswithoutnecessarilyindicating
antaspects
ofsomerelatedmulti-modalstudiesaresummarizedinTa-
ble1.
Table1:Previousstudiesofdualbiometricsusingface
Source
(Year)
Chang
(’03)
[6]
Biometric
Source
(Subjects)
2Dface&
3Dfacial
shape(275)
sum
Fusion
Level
hybrid
(rank&
metric)
Wang
(’02)
[8]
2Dface&
3Dfacial
shape(50)
weighted
sum
metric
Liu
(’99)
[10]
2Dface&
3Dfacial
shape(200)
sum
feature
sum,
decision
tree
Frischholz
(’00)
[13]
2Dface,
voice&lip
motion(180)
sum,min,
product,
max,median
hybrid
(rank&
metric)
发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1713813825a2323856.html
评论列表(0条)