2024年4月7日发(作者:主机开了显示器没反应无信号)
Energy&Fuels2002,16,1571-15751571
RapidandAccurateSARAAnalysisofMediumGravity
CrudeOils
y*
NewMexicoPetroleumRecoveryResearchCenter,NewMexicoInstituteofMiningand
Technology,Socorro,NewMexico
ReceivedMay31,2002
alysisiswidely
usedtodividecrudeoilcomponentsaccordingtotheirpolarizabilityandpolarityusingafamily
msarisebecausetheanalyticaltechniquesdonot
fthedata,however,rarelydistinguishbetweenthe
differenttechniques,assumingthatSARAfractionvaluesgeneratedbyanyofthecommonly
inethisassumptionformediumgravity
crudeoilsandthreeSARAanalysismethods:gravity-drivenchromatographicseparation,thin-
layerchromatography(TLC),andhigh-pressureliquidchromatography(HPLC).Resultsfora
suiteofsixcrudeoilsamplesshowthatasignificantvolumeofvolatilematerialthatcontains
ovedHPLCmethodisintroduced
thatgivesanalysescomparabletotheASTM-recommendedchromatographicmethodinlesstime
rnalconsistencytestisrecommendedforevaluating
SARAfractiondata.
Introduction
Analysisofthecompositionofcrudeoilscanbe
endlesslycomplex;theamountofdetailcollectedshould
bedictatedbytheapplicationforwhichthedatais
pleanalysisschemeistodivideanoil
intoitssaturate,aromatic,resin,andasphaltene(SARA)
uratefractionconsistsofnonpolar
materialincludinglinear,branched,andcyclicsatu-
ics,whichcontainoneor
morearomaticrings,ain-
ingtwofractions,resinsandasphaltenes,havepolar
tinctionbetweenthetwoisthat
asphaltenesareinsolubleinanexcessofheptane(or
pentane),whereasresinsaremisciblewithheptane(or
pentane).Thisclassificationsystemisusefulbecause
itidentifiesthefractionsoftheoilthatpertainto
asphaltenestability;itthusshouldbeusefulinidentify-
ingoilswiththepotentialforasphalteneproblems.
SARAanalysisbeganwiththeworkofJewelletal.
1
Threemainapproacheshavebeenusedtoseparate
crudeoilsandotherhydrocarbonmaterialsintoSARA
-geladsorptionchromatographymethod
isthebasisofASTMD2007-93.
2
Thismethodrequires
afairlylargeoilsample,istime-consuminganddifficult
toautomate,andrequireslargequantitiesofsolvents.
irst
grouparehigh-pressureliquidchromatographic(HPLC)
*:1-505-835-6031.E-mail:jill@
.
(1)Jewell,D.M.;Weber,J.H.;Bunger,J.W.;Plancher,H.;Latham,
.1972,44,1391-1395.
(2)ASTMD2007-93:“StandardTestMethodforCharacteristic
GroupsinRubberExtenderandProcessingOilsbytheClay-Gel
AdsorptionChromatographicMethod,”ASTM,1993.
methods,firstintroducedbySuatoniandSwab.
3
Early
HPLCtechniquesusedsilicaoraluminacolumnsto
elopments
inpreparationofthebondedphaseofHPLCcolumnss
especiallyNH
2
-bondedmaterialssmadeitpracticalto
separateheavierfractionsofpetroleumsamples.
4-8
HPLCtechniquesarefaster,morereproducible,and
morereadilyautomatedthantheASTMcolumntech-
cases,however,itisnecessarytoremove
theasphaltenefractionbeforeproceedingwiththe
tenesareeitherirreversibly
adsorbedorprecipitatedduringthesaturateelution
step,andquantitativerecoverycannotbeachieved.
9
Thefastestseparationmethodusesthin-layerchro-
matography(TLC)onquartzrodsthatarecoatedwith
thecolumnandHPLC
techniques,asphaltenesneednotbeseparatedfrom
othercrudeoilcomponentsbeforechromatographic
artechnologyknownastheIatroscan
thatcombinesTLCwithflameionizationdetection
(TLC-FID)wasfirstappliedbySuzuki
10
toautomate
quantitativeSARAseparations,amethodwhichhas
(3)Suatoni,J.C.;Swab,.1975,13,361-
366.
(4)Miller,.1982,54,1742-1746.
(5)Radke,M.;Willsch,H.;Welte,.1984,56,2538-
2546.
(6)Grizzle,P.L.;Sablotny,.1986,58,2389-2396.
(7)Fe´lix,G.;Thoumazeau,E.;Colin,J.M.;Vion,.
Chromatogr.1987,10,2115-2132.
(8)Chaffin,J.M.;Lin,M.S.;Liu,M.;Davison,R.R.;Glover,C.J.;
Bullin,togr.,l.1996,19,1669-1682.
(9)McLean,J.D.;Kilpatrick,Fuels1997,11,570-
585.
(10)Suzuki,Y.21stAnnualMeetingoftheJapanSocietyfor
AnalyticalChemistry,1972;47(inJapanese).
10.1021/ef0201228CCC:$22.00©2002AmericanChemicalSociety
PublishedonWeb10/29/2002
1572Energy&Fuels,Vol.16,No.6,2002
ilSampleProperties
oil°API
25.2
22.6
31.3
28.8
37.2
31.1
densityat20°C
(g/cm
3
)
0.8956
0.9161
0.8673
0.8795
0.8409
0.8685
MW
(g/mol)
236
268
235
240
213
270
RIat20°C
1.5128
1.5137
1.4851
1.4976
1.4769
1.4906
P
RI
1.4513
1.4231
1.4444
1.4465
1.4223
∼1.44
FanandBuckley
n-C
7
asph
(%)
8.7
2.8
1.9
5.8
1.3
4.1
A-95
C-LH-99
C-R-00
S-Ven-39
SQ-95
Tensleep-99
sincebeenusedextensively.
11,12
Barman
13
compared
SARAanalysesofheavyhydrocarbondistillatesbythe
-FIDusesvery
actionsinacrudeoil
sampleareoftenwell-resolvedusingestablisheddevel-
tativeresultsareobtained
frompeakareas,assumingthateachSARAfractionhas
anidenticalFIDresponsefactor.
ComparisonsofSARAfractionmeasurementsby
differenttechniques,usuallyfromdifferentlaboratories,
extent,these
differencesmightberealscausedbytheuseofdifferent
work,identicalsampleswereexamined
byseveraldifferenttechniquestoilluminatethe
ovedHPLC
techniqueandatestforinternalconsistencyinSARA
dataarepresented.
ExperimentalMaterialsandMethods
ium-gravity,deadcrudeoils,varying
inAPIgravityfrom22.6to37.2°,wereusedinthisstudy.
SelectedphysicalandchemicalpropertiesareshowninTable
1(reproducibletoatleast(5intheleastsignificantdigit
shownforeachmeasurement).Densitiesweremeasuredusing
aMettler/PaarDMA40withacirculatingwaterbathfor
vitieswerecalculatedfrom
measureddensities,correctedto60°emolecular
weight(MW)wasdeterminedbyfreezingpointdepression
(PrecisionSystemsCryoscope5009).Kinematicviscosities
weremeasuredinCannon-Fenskeviscometersandconverted
untsofasphaltenepre-
cipitatedbyn-heptane(1goil:40mLheptane)rangedfrom
1.3to8.7%.Refractiveindex(RI)wasmeasuredwithanIndex
InstrumentsGPR11-37automaticrefractometer.P
RI
isthe
RIofamixtureofoilandtheleastamountofheptaneinwhich
asphalteneaggregatescanbeobservedmicroscopically(ata
magnificationofabout320×).ThedifferencebetweenRIof
theoilsampleandP
RI
isameasureofasphaltenestability.
14
thecrudeoilswas
testedusingthefullASTM-recommendedprocedure(ASTM
D2007-93
2
)
ASTMprocedureisachromatographicseparationofthenon-
asphalticoilcomponentsthroughtwocolumns:anAttapulgite
clay-packedcolumnadsorbstheresinsandasecondcolumn
packedwithactivatedsilicagelseparatesaromaticsfromthe
saturatefraction.A50:50mixtureoftolueneandacetoneis
aromaticscanberecoveredbySoxhletextractionofthesilica
lecomponentslostduringtheprocess
arecalculatedbyweightdifference.
-5Iatroscan(IatronLabsInc.,Tokyo),
equippedwithaflameionizationdetector(FID),interfaced
(11)Karlsen,D.A.;Larter,m.1991,17,603-617.
(12)Vela,J.;Cebolla,V.L.;Membrado,L.;Andres,J.M.J.
.1995,33,417-424.
(13)Barman,.1996,34,219-225.
(14)Buckley,J.S.;Hirasaki,G.J.;Liu,Y.;VonDrasek,S.;Wang,
J.X.;Gill,l.1998,16,251-285.
tionofparaffinsfromsingle-anddouble-
ringaromatics.
withamodel203PeakSimpledatasystem(SRIInstrument),
wasusedtoscansilica-coatedquartzrods(Chromarod-SIII,
IatronLaboratories).Therodswere15.2cmlongand1.0mm
indiameter,withauniformcoatingof5.0µmsilicaparticles
(porediameter60Å).TheFIDdetectorwasoperatedwitha
puregradeofhydrogenataflowrateof160mL/min;airata
flowrateof2.0L/minwassuppliedbyapump;scanspeed
was60s/scan.
CrudeoilsamplesweredissolvedinHPLCgradedichloro-
methane(DCM)ataconcentrationof20mg/mL.A1µL
repeatingsyringe(AlltechAssociate,Inc.)wasusedtospot
10to20µpment
stepsincludedexposuretoHPLCgradehexanefor30min,
HPLCgradetoluenefor10min,anda95:5mixtureofDCM
sweredriedinairfor3min
eatmentproducedfourwell-
resolvedpeaksrepresentingsaturates,aromatics,resins,and
ativelossesduringthedevelopmentsteps
wereevaluatedbytestsofsimilarlytreatedpreparativethin-
layerchromatographyplatesforwhichchangesinweightcould
bemeasuredandbycomparisonofpeaksizesforundeveloped
rods.
Cchromatographicseparationsystem
consistedofaModel110Apump(Beckman),anR401dif-
ferentialrefractometer(Waters),aU6Kuniversalinjector
(Waters),aModel7040high-pressureswitchingvalve(Rheo-
dyne),andaWaters486UVdetector(Millipore).Analogue
signalsfromtheRIdetectorwereinterfacedtothemodel203
PeakSimpledataacquisitionsystem(SRIInstrument).Two
3.9×300mmµBondapakNH
2
columnswith10µmpacking
(Waters)wereusedinseriesforchromatographicseparation
etectorwasoperatedatawavelengthof
254nmtomonitorelutionofeachfraction.
Selectivityofthecolumnswastestedusingmixturesof
esofn-decane(C
10
),n-tridecane
(C
13
),n-pentadecane(C
15
),andn-octadecane(C
18
)inhexane
elutedasasinglepeak,asdidhexanesolutionsoftolueneand
1,3-diisopropylbenzene(DIPB).Hexanesolutionsofasingle-
ringaromatic(DIPB)withatwo-ringcompound(1-methyl-
naphthaleneor1-MN)elutedastwowell-resolvedpeaks.
MixturesofthehexanesolutionsofDIPB,1-MN,andC
15
elutedasthreedistinctpeaks(Figure1).
Crudeoil(1-mL)wasweighedanddissolvedin40mLof
hexaneinanopen-topscrewcapvialwithaTeflon/silicon
48h,asampleofmaltenesdissolvedinhexane
waswithdrawnthrougha0.2µ
withdrawnmaltenesolutionwassealedina5-mLcrimp-top
SARAAnalysisofMediumGravityCrudeOils
parationofC-R-00maltenes.
ctorCalibration
classhydrocarbonsignal(area/mg)
saturatesn-heptadecane4647
1-ringaromaticsDIPB7088
2-ringaromatics1-MN12517
3-ringaromaticsphenanthrene16022
glassvialwithanaluminumsealandPTFE/siliconseptum.
Theprecipitatedasphalteneswererecoveredbyfiltration
througha0.22µmfilter,dried,l0.5mL
aliquotsofthemaltene/hexanemixturewereinjectedontothe
HPLCcolumns,usingagastightHPLCsyringe(Hamilton).
Saturatesandaromaticswereelutedwithhexaneataflow
rateof1.5mL/untsofsaturatesandaromatics
werecalculatedfrompeakareasusingcalibrationfactors
measuredforknowncompounds(Table2).Standarddeviations
forpeakareasofknowncompoundswerelessthan1%ofthe
alchromatogramisshowninFigure
2.
Resinswerestronglyadsorbedanddidnotelutewith
hexane.A30%(v/v)dichloromethane/hexanebackflushwas
usedtoelutetheresinsaccumulatedfromatleastthree
replicateinjectionstoensurethatsufficientresinscouldbe
collectedforaccurategravimetricdeterminationoftheamount
ofresinremainingaftersolventevaporation.
TheprincipalimprovementsintheHPLCmethoddescribed
hereoverpreviouslyproposedHPLCtechniquesincludethe
following:(i)analysisofthesaturateandaromaticfractions
withoutsolventevaporation,thusavoidingtheuncertainties
duetoevaporationofsomeofthemorevolatilematerialalong
withthesolvent;and(ii)improvedgravimetricquantification
oftheamountofresinselutedbybackflushingthecolumns
afterrepeatedinjectionsofmaltenes.
ResultsandDiscussion
TheSARAfractionsmeasuredbyallthreetechniques
ultsoftheASTM
methodprovideabaselineagainstwhichotherSARA
3showsthe
resultsoft-testsappliedtoTLC-FIDandHPLCresults
pairedwiththoseobtainedbytheASTMmethodforthe
sameoiltodeterminestatisticalsignificanceofthe
differencesinthedata.
isonsbetweenASTM
andTLC-FIDresultsshowconsistent,statistically
significantdifferencesforallfractionsexcepttheas-
phaltenes(Table3).Theamountofvolatilemateriallost
beforethedetectorresponseisrecordedisnotroutinely
ountisashighas60%
inthisstudy,allofwhichcomesfromthesaturateand
tionswereapportionedonthe
basisofpeakareassummedto100%,ignoringthe
volatilematerial,theamountsofresinsandasphaltenes
Energy&Fuels,Vol.16,No.6,20021573
set-testsforSignificanceofDifferences
betweenSARAMethods
a
p-values
b
fractionASTMvsTLC-FIDASTMvsHPLC
saturates<0.00010.0236
saturates+volatiles0.00490.8192
aromatics0.00640.1634
resins0.04430.0914
asphaltenes0.2214
a
Statisticallysignificantdifferencesarehighlightedinbold
italictype.
b
pistheprobabiltythatthesamplescomefrom
differentpopulations;p<0.05indicatesthatdifferencesbetween
theresultsofdifferentmeasurementmethodsarestatistically
significant.
heamount
ofvolatilematerialhasbeenmeasuredinthisstudy,it
mightbeincludedinthesaturateandaromaticfrac-
tions,butadditionalinformationisneededonhowto
ion
ofthevolatileandsaturateamountsfromtheTLC-
FIDmethodwouldsignificantlyoverestimatethesatu-
ratefractionandunderestimatetheamountofaromat-
separatingallofthevolatilematerialupto
somefairlyhighboilingpoint(KarlsenandLarter
11
measuredlossesofapproximately50%ofn-C
14
,which
boilsat253.5°C;whereasthelossofn-C
16
,whichboils
at286.8°C,wasnegligible)andanalyzingthatfraction
separately,thencombiningthetwosetsofdatawould
onebeabletoapplytheTLC-FIDtechniquetomedium
gravityoilsampleswithanyconfidence,buttheadvan-
tageofrapidanalysissthemainreasonforusingthis
ioningthehighmolec-
ularweightpolarmaterialsbetweenresinsandasphalt-
enes,whichisalwaysbased,ratherarbitrarily,on
solvency,inevitablywillvaryfromtheASTMandHPLC
methodsaswellsincethesolventsusedarenotidenti-
asisofthesecomparisons,theTLC-FID
techniquecannotberecommendedforroutineSARA
analysisofmediumgravityoils.
encesbetweentheimproved
HPLCSARAfractionsandthosemeasuredbythe
ASTM-recommendedmethodweremainlyinthevolatile
erenolossestoevapora-
tionintheHPLCtechnique,unliketheASTMmethod
inwhichthereweresomelosses(duringevaporationof
thesolventafterremovaloftheasphaltenesandinthe
variousfractionrecoveryandsolventevaporationpro-
cesses).However,ifallofthevolatilemateriallostin
theASTMmeasurementswasassumedtobelongtothe
saturatefraction,theamountsofsaturates,aromatics,
andresinsdeterminedbytheASTMandHPLCmethods
werestatisticallyindistinguishable(seeTable3).The
measurementtechniquefortheamountofasphaltenes
isthesameforbothmethods,henceasphalteneswere
ordifferencesbetween
thetwotechniquesaretheamountsoftime,sample,
htechniques,thereisa
two-dayperiodrequiredforseparationoftheasphalt-
that,however,theHPLCtechniquere-
quiresonlyabout1hpersampleincludingthree
replicateseparationsofsaturatesandaromaticsand
backflushingofthecolumntoeluteresins,compared
mof
oilisadequatetogivethesameaccuracybytheHPLC
1574Energy&Fuels,Vol.16,No.6,2002FanandBuckley
isonofSARAfractionsdeterminedbytheASTMmethod,bytheimprovedHPLCmethod,andbyTLC-FID.
solventrequirementsareontheorderof300mLand2
LpersamplefortheHPLCandASTMtests,respec-
tively.
InternalConsistencyofSARAFractionData.
Therearemanyvariationsofthespecificanalyses,all
ofwhicharereferredtobytheacronymofSARA,but
hedetails
oftheseparationtechniquearenotalwaysprovided,a
methodisneededtoevaluateSARAdatafromunspeci-
fiedtestssothatASTMandHPLCdatacanbedistin-
eevaluation
schemeisshownhere,basedoncomparisonsbetween
theSARAfractiondataandAPIgravity,whichisalmost
universallyreportedforstock-tankoilsamples.
Agroupof87crudeoilswasevaluatedusingthe
Afraction
datathusobtainedwereusedtofindregressioncoef-
ficientsthatcorrelatethepercentagesofeachfraction
withtheAPIgravitiesmeasuredforthesamesamples.
Thefollowingempiricalrelationshipwasobtained:
˚API
calculated
)74.5-0.306×S-0.385×
A-1.08×R-0.763×As(r
2
)0.68)
whereSisthewt%ofsaturates,Aisthewt%of
aromatics,Risthewt%ofresins,andAsisthewt%
fmeasuredvscalculatedAPI
gravityisshowninFigure4.
TotesttheconsistencyofanysetofSARAfraction
data,similarplotscanbeprepared,asillustratedfor
esome
scatter,theASTMdataclearlyfollowthepredicted
SARAAnalysisofMediumGravityCrudeOils
mateofAPIgravityobtainedfromSARA
fractiondatacanbecomparedtothemeasuredAPIgravity
asatestoftheinternalconsistencyoftheSARAdata.A
correlationwasdevelopedwith87differentcrudeoilsamples
spanningtherangefromabout15toover40°API,testedwith
Mdatasetcloselyreproduces
thecorrelation,whereasthereisnocorrelationbetweenthe
SARAfractiondatafromTLC-FIDmeasurementsandAPI
gravityoftheoil.
trend(r
2
)0.76),whereasthereisnocorrelation
betweentheTLC-FIDdataandAPIgravitymeasured
atitisnotsufficientto
etrendforoilswith
varyingpropertiesoverarangeofAPIgravitythatis
relationshouldbeappliedonlyover
Energy&Fuels,Vol.16,No.6,20021575
thegravityrangeofthesamplesthatwereusedinits
,fromalowvalueofabout15toahigh
ofabout40°API.
Conclusions
•MeasurementsofSARAfractionsarehighlydepend-
sofdifferentmethodsmay
nisneededincomparing
results,evenfromsimilarmethods.
•TheTLC-FIDtechniquecannotbeusedtotest
mediumgravityoilswithoutconsiderableadditional
analysistoaccountforcomponentsthatboilattemper-
aturesupto250°ortioningofhighmolecular
weight,polar,aromaticmaterialintoasphaltenesand
resinsdoesnotcorrespondtotheasphaltenesandresin
fractionsdefinedbytheASTMmethod.
•AnefficientHPLCmethodologyhasbeendeveloped
andshowntocorrespondcloselytothemoretime-
consumingASTM-recommendedmethodofSARAanaly-
sis.
•SARAfractiondatacanbetestedforinternalcon-
sistencybycomparingAPIgravityvaluescalculated
fromtheSARAfractionswithmeasuredvaluesofAPI
gravityforthesameoilsample.
n
rkwas
supportedbytheNationalEnergyTechnologyLabora-
tory(NETL)oftheUSDOEthroughcontractDE-AC26-
99BC15204andbysupportfromindustrialsponsors
includingBP,Chevron,GazdeFrance,IFP,Norsk
Hydro,ilswereprovidedby
ARCO,Chevron,Shell,andtheUniversityofWyoming.
EF0201228
发布者:admin,转转请注明出处:http://www.yc00.com/xitong/1712437829a2059463.html
评论列表(0条)