2024年4月12日发(作者:)
纳米金催化剂催化氨硼烷的方法
英文回答:
Gold nanoparticles (AuNPs) have emerged as promising
catalysts for ammonia borane (AB) hydrolysis due to their
unique physicochemical properties and high catalytic
activity. The catalytic mechanism of AuNPs in AB hydrolysis
involves several key steps:
1. Adsorption of AB on AuNP surface: AB molecules are
initially adsorbed onto the surface of AuNPs through
electrostatic interactions between the positively charged
amine group and the negatively charged Au surface.
2. Activation of AB: The adsorbed AB molecules are
activated by the AuNPs, which weakens the B-N bond and
facilitates the hydrolysis reaction. This activation is
believed to occur via a combination of electronic and
geometric effects.
3. Hydrolysis of AB: The activated AB molecules undergo
hydrolysis in the presence of water, resulting in the
formation of ammonia (NH3) and hydrogen (H2). The
hydrolysis reaction is catalyzed by the AuNPs, which
provide a suitable surface for the reaction to take place.
The catalytic activity of AuNPs in AB hydrolysis can be
tuned by controlling their size, shape, and composition.
For example, smaller AuNPs with a higher surface-to-volume
ratio exhibit higher catalytic activity due to the
increased number of active sites. Additionally, the
presence of surface modifiers or dopants on AuNPs can
further enhance their catalytic performance.
AuNP-catalyzed AB hydrolysis has been extensively
studied for various applications, including fuel cells,
hydrogen production, and chemical synthesis. In fuel cells,
AB serves as a hydrogen source, and AuNPs act as catalysts
for AB hydrolysis, generating hydrogen for the cell's
operation. In hydrogen production, AB hydrolysis using AuNP
catalysts provides a clean and efficient method for
generating hydrogen fuel. Furthermore, AuNP-catalyzed AB
hydrolysis has been utilized in chemical synthesis to
reduce metal ions and prepare nanomaterials.
中文回答:
纳米金催化剂由于其独特的物理化学性质和较高的催化活性,
已成为氨硼烷(AB)水解中颇具前景的催化剂。AuNPs 在 AB 水解
中的催化机理涉及几个关键步骤:
1. AB 在 AuNP 表面吸附,AB 分子最初通过带正电荷的胺基与
带负电荷的 Au 表面之间的静电相互作用吸附在 AuNPs 表面上。
2. AB 活化,吸附的 AB 分子被 AuNPs 活化,这会削弱 B-N
键并促进水解反应。这种活化被认为是通过电子和几何效应的结合
发生的。
3. AB 水解,活化的 AB 分子在水的存在下发生水解,产生氨
(NH3)和氢(H2)。水解反应由 AuNPs 催化,它为反应提供合适
的表面。
AuNPs 在 AB 水解中的催化活性可以通过控制其尺寸、形状和
组成进行调节。例如,具有较高表面积体积比的较小 AuNPs 由于活
性位点数量增加而表现出更高的催化活性。此外,AuNPs 上表面改
性剂或掺杂剂的存在可以进一步提高其催化性能。
AuNP 催化的 AB 水解已针对各种应用进行了广泛研究,包括燃
料电池、氢气生产和化学合成。在燃料电池中,AB 作为氢源,
AuNPs 作为 AB 水解的催化剂,为电池的运行产生氢气。在制氢领
域,使用 AuNP 催化剂进行 AB 水解提供了一种清洁有效的制氢方
法。此外,AuNP 催化的 AB 水解已用于化学合成中还原金属离子和
制备纳米材料。
发布者:admin,转转请注明出处:http://www.yc00.com/web/1712882638a2140942.html
评论列表(0条)