Sb2Te3基热电薄膜的研究进展

Sb2Te3基热电薄膜的研究进展


2024年4月12日发(作者:)

第49卷第6期

2021年6月

硅 酸 盐 学 报

JOURNAL OF THE CHINESE CERAMIC SOCIETY

Vol. 49,No. 6

June,2021

DOI:10.14062/.0454-5648.20200617

综 合 评 述

Sb

2

Te

3

基热电薄膜的研究进展

易 文

1,2

,赵永杰

1

,王伯宇

1

,周志方

2

,李亮亮

2

,李静波

1

(1. 北京理工大学材料学院, 北京 100081;2. 清华大学材料学院,北京 100084)

摘 要:基于热电薄膜的微型热电器件在微区制冷、温差发电等领域具有广阔应用前景。具有高功率因子、ZT值的热电薄

膜对微型热电器件的性能至关重要。Sb

2

Te

3

基材料是室温下性能优异的p型热电材料。然而,目前Sb

2

Te

3

基薄膜的热电性能

仍然不能满足实际应用的需求。简述了热电材料研究的相关背景,介绍了Sb

2

Te

3

的晶体结构,概述了Sb

2

Te

3

基薄膜的常用制

备技术,从提高功率因子和降低热导率2方面综述了提高Sb

2

Te

3

基薄膜热电性能的方法。重点介绍了材料组织、微观结构与

热电性能的关系,即缺陷、择优取向、纳米颗粒、超晶格、有机无机杂化等对Sb

2

Te

3

基薄膜热电性能的影响。此外,对Sb

2

Te

3

基热电薄膜的发展方向予以展望。

关键词:热电薄膜;碲化锑;热电性能;功率因子;热导率

中图分类号:TB34 文献标志码:A 文章编号:0454–5648(2021)06–1111–14

网络出版时间:20210406

Research Progress on Antimony Telluride Based Thermoelectric Thin Films

YI Wen, ZHAO Yongjie, WANG Boyu, ZHOU Zhifang

2

, Li Liangliang

2

, Li Jingbo

1

(1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;

2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China)

Abstract: Micro thermoelectric devices based on thermoelectric films have promising applications in various fields such as

micro-zone refrigeration and power generation. Thermoelectric films with high power factor and large ZT values are critical materials

in these devices. Sb

2

Te

3

-based materials are outstanding p-type thermoelectric materials at room temperature. However, the

thermoelectric properties of Sb

2

Te

3

-based thin films cannot meet the requirement of practical applications. The research background

of thermoelectric materials is briefly introduced, the crystal structure of Sb

2

Te

3

is discussed, the preparation techniques of

Sb

2

Te

3

-based thin films are outlined, and the methods of improving the power factor and reducing the thermal conductivity of

Sb

2

Te

3

-based thin films are summarized. In particular, the effects of microstructure on thermoelectric properties are focused on to

elucidate the mechanism of improving thermoelectric properties of the films, which includes defects, preferential orientation,

nanoparticles, superlattice, organic-inorganic hybridization, and so on. In addition, the future research directions for Sb

2

Te

3

-based

thermoelectric thin films are discussed.

1,211

Keywords:

thermoelectric thin film; antimony telluride; thermoelectric property; power factor; thermal conductivity

当前,能源危机、全球变暖、环境污染等问题

日益严重,因此,寻找资源丰富、环境友好的新能

源材料,并实现能源的高效利用至关重要

[13]

。基于

Seebeck效应和Peltier效应,热电材料能够实现热

收稿日期:2020–08–17。 修订日期:2020–09–22。

基金项目:国家自然科学基金(51972029);国家重点研发计划

(2016YFA0201003)。

第一作者:易 文(1996 —),男,硕士研究生。

通信作者:李静波(1969 —),男,博士,教授。

李亮亮(1980 —),男,博士,副研究员。

能和电能之间的相互转换,同时热电器件具有无污

染、无运动部件、无噪声、易于维护、使用寿命长、

可串并联等优点

[4]

,在温差发电、固态制冷、无线

传感等方面表现出优异的功能特性,在新能源、电

Received date: 2020–08–17. Revised date: 2020–09–22.

First author: YI Wen (1996 –), male, Master candidate.

E-mail: yiwen18@

Correspondent author: LI Jingbo(1969 –), male, Ph.D., Professor;

LI Liangliang(1980–), male, Ph.D., Associate Professor.

E-mail: lijb@; liliangliang@

· 1112 · 《硅酸盐学报》 J Chin Ceram Soc, 2021, 49(6): 1111–1124 2021年

子信息、医疗器械、航空航天、国防等多领域具有

显著的应用价值

[56]

。热电材料的性能一般用无量纲

优值(ZT)来衡量。ZT的计算公式为:

ZTS

2

T/

(1)

其中:S为Seebeck系数;σ为电导率;T为绝对温

度;κ为热导率;S

2

σ为功率因子。热电材料的热导

率κ由载流子热导率κ

e

和晶格热导率κ

L

组成

[78]

,即:

e

L

(2)

由式(1)可知,提高热电材料的ZT值,需要提

高材料的Seebeck系数和电导率,同时降低材料的

热导率,而这3个参数相互耦合,难以实现单一调

[1,9]

。理论研究发现,材料尺度降低到纳米级别时

所产生的量子限域效应为单独调控电导率、Seebeck

系数和热导率提供了可能

[1014]

随着微机电系统、物联网技术的发展以及各种智

能可穿戴设备的不断涌现,对设备的可持续供电提出

了新的要求。传统电池存在需要定期更换、充电和维

修的缺点。基于热电薄膜的微型热电器件能够收集周

围环境热量实现长时间供电,同时还具有柔性好、体

积小、适应于多种复杂环境等优点,在物联网传感器、

移动电子等领域具有广阔应用前景

[1518]

Sb

2

Te

3

属于窄带隙半导体(E

g

<0.3 eV)

[19]

。Sb

2

Te

3

基热电材料一般为p型,室温下具有优异的热电性

[2023]

。近年来,Sb

2

Te

3

基薄膜受到科研工作者的

广泛关注。热蒸发、溅射、电化学沉积、分子束外

延(MBE)、脉冲激光沉积(PLD)、化学气相沉积(CVD)

等多种技术均可用于制备Sb

2

Te

3

基薄膜。通过组织

调控,如第二相纳米颗粒、择优取向、超晶格结构

等,可以显著改善Sb

2

Te

3

基薄膜的热电性能。Kim

[24]

采用脉冲激光沉积方法在Bi

0.5

Sb

1.5

Te

3

薄膜中

引入Te纳米颗粒,利用能量过滤效应提高薄膜性能。

当Te纳米颗粒从0%(体积分数)增加到~15%时,薄

膜Seebeck系数从170.00 μV/K提高到250.00 μV/K,

功率因子从1.55 mW/(mK

2

)提高到2.22 mW/

(mK

2

)。Tan等

[25]

采用一种新颖的电场辅助磁控溅

射方法制备了高度(0 1 5)取向的Sb

2

Te

3

薄膜。在30 V

外电场作用下,该薄膜的室温ZT值达到了1.75。

Venkatasubramanian等

[26]

通过金属有机化学气相沉

积制备了p型Bi

2

Te

3

/Sb

2

Te

3

超晶格薄膜。该薄膜晶

格热导率最小值为~0.22 W/(mK),而对应的Sb

2

Te

3

和Bi

2

Te

3

的晶格热导率分别为~0.96 W/(mK)和

~1.05 W/(mK)。

为了满足实际应用需求,Sb

2

Te

3

基薄膜的热电

性能仍需进一步提升,首先简述了Sb

2

Te

3

材料的晶

体结构,然后介绍了Sb

2

Te

3

基薄膜的常用制备技术,

之后从提高功率因子和降低热导率2个角度总结了

提高Sb

2

Te

3

基薄膜热电性能的方法,最后对Sb

2

Te

3

薄膜未来的研究方向予以展望。

1 Sb

2

Te

3

的晶体结构

图1为Sb

2

Te

3

的晶体结构示意图。Sb

2

Te

3

属于

三方晶体结构,空间群为R3m

[2728]

,沿六方坐标

系下c轴方向呈周期性层状结构。该周期性层状结

构单元由五层原子层组成,原子层的顺序为

Te(Ⅰ)-Sb-Te(Ⅱ)-Sb-Te(Ⅰ),其中Te(Ⅰ)与Sb之间

以共价键和离子键相连,Te(Ⅱ)与Sb之间以共价键

相连,相邻的Te(Ⅰ)与Te(Ⅰ)通过van der Waals键

相连

[2730]

图1 Sb

2

Te

3

晶体结构示意图

Fig. 1 Crystal structure of Sb

2

Te

3

Sb

2

Te

3

的结构特点使Sb原子和Te(Ⅱ)原子受到

较大的束缚,而Te(Ⅰ)原子受到的束缚相对较弱,

材料容易出现Te空位。由于Sb与Te的原子半径γ

和电负性都比较接近(γ

Sb

=140 pm,γ

Te

=136 pm;

Sb

=2.05,

Te

=2.10),多余的Sb原子容易取代Te

原子形成反位缺陷

Sb

Te

,导致Sb

2

Te

3

表现出较强的

p型传导

[27]

,如式(3)所示:

2Sb

3Te

2Sb

Te

6h

V

Te



2V

Sb



3/2Te

2

(g)

(3)

其中:h为空穴;

V

Te



为Te空位;

V

Sb



为Sb空位;

Te

2

(g)为挥发的Te

[3133]

研究发现,Sb

2

Te

3

的层状结构导致该材料的电导

率和热导率存在很大的各向异性,两者在垂直于c轴

方向的数值均高于平行于c轴方向的数值,而Seebeck

第49卷第6期 易 文 等:Sb

2

Te

3

基热电薄膜的研究进展 · 1113 ·

系数几乎没有各向异性

[3438]

。因此,调控晶体取向为

解耦各个热电参数提供了一个可能的途径。

温度、溶剂、溶液的pH值、浓度、电极表面状态

等多种因素的影响,因此薄膜的成分控制和结构

调控较为困难

[14]

。由表1可知,与热蒸发和溅射

相比,电化学沉积制备的Sb

2

Te

3

基薄膜的功率因

子一般更低。

MBE可在高真空或者超高真空的条件下制备

高质量薄膜,能够严格控制薄膜厚度、成分、结构

和掺杂浓度,但是MBE存在设备昂贵、维修费用

高、沉积速率低等问题

[14]

。PLD一个突出的优点是

能够保持薄膜和靶材成分的一致性

[4447]

,避免因Te

的高温易挥发性而导致的薄膜成分偏离化学计量

比,但是采用PLD制备的薄膜均匀性欠佳,因此难

以制备大面积薄膜

[14]

。CVD沉积的薄膜一般纯度

高、残余应力小、结晶性好、沉积速率高,但是部

分反应气体易燃或有一定毒性。

2 Sb

2

Te

3

基薄膜的制备技术

Sb

2

Te

3

基薄膜可以通过热蒸发、溅射、电化学

沉积、MBE、PLD、CVD等多种技术制备。热蒸

发、溅射和电化学沉积是常用技术,它们所使用的

设备相对简单且易于操作

[39]

。表1总结了不同技术

制备的Sb

2

Te

3

基薄膜的热电性能。热蒸发的沉积速

率高,膜厚可控,但是薄膜与基板附着力较小

[14]

与热蒸发相比,溅射沉积的Sb

2

Te

3

薄膜致密度更

高,薄膜与基板的附着力更好,薄膜功率因子略

高,但缺点是其沉积速率比热蒸发低,而且靶材

利用率低。电化学沉积不需要真空条件,成本低,

沉积速度快

[4043]

,但是薄膜的沉积受电流、电压、

表1 不同方法制备的Sb

2

Te

3

基薄膜的热电性能

Table 1 Thermoelectric properties of Sb

2

Te

3

based thin films deposited by different preparation techniques

Film thickness/

Film Preparation technique Substrate

nm

σ/

(Scm)

−1

S/

(μVK)

230.07

187.00

236.00

226.00

261.56

−1

S

2

σ/

−1−2

κ/

(mWm

K

) (Wm

−1

K

−1

)

3.32

ZT

0.88

1.28

1.75

Reference

[48]

[49]

[50]

[51]

[25]

Sb

2

Te

3

Evaporation SiO

2

/Si(100) 1 000 628.14

Sb

2

Te

3

Evaporation SiO

2

glass

Bi

0.4

Sb

1.6

Te

3

Evaporation Glass

2 500 790.00 2.76 0.94

3.56

3.88

5.33

3.80

4.82

0.91

0.91

190 640.00

000 760.00 Bi

1.5

Sb

0.5

Te

3

Evaporation SiO

2

glass 5

Sb

2

Te

3

Magnetron sputtering Conductive glass

Glass

AlN

1 500

563

1 300

779.42

Bi

0.5

Sb

1.5

Te

3

Magnetron sputtering

Bi

0.5

Sb

1.5

Te

3

Magnetron sputtering

800.00 219.00

1 230.00 198.00

[52]

[53]

[54]

[55]

[56]

Sb

2

Te

3

Magnetron sputtering SiO

2

glass 1 000 820.00 229.00 4.30 1.06 1.22

Bi

0.5

Sb

1.5

Te

3

Sb

2

Te

3

Sb

2

Te

3

Sb

2

Te

3

Sb

2

Te

3

(Bi

x

Sb

1x

)

2

Te

3

Magnetron sputtering

Ion beam sputtering

Electrochemical

deposition

Electrochemical

deposition

Electrochemical

deposition

Electrochemical

deposition

AlN

BK7 glass

490

330

1 460.00

2 361.00

191.30

161.00

5.34

6.12

Ti/Cu/Ti/Si 10 000 281.69 441.20 5.48

Cr/Au/Si 50 000 400.00 170.00 1.12

Stainless steel

(SUS304)

Au/Pt/Cr/Si or

stainless steel

300 1 032.00 115.00

20 000 400.00 182.00

1.36

1.32

[57]

[58]

[41]

1.00 0.40[59]

GaSb/Si(111) 200 3 238.30 138.00 6.17 [60] Sb

2

Te

3

MBE

BaF

2

(111) and

Sb

2

Te

3

MBE

SiO

2

/Si

1 000 1 696.00 130.00 2.90 [61]

Bi

0.5

Sb

1.5

Te

3

PLD Fused silica 180 736.98 194.00 2.78 [62]

Bi

0.4

Sb

1.6

Te

3

PLD

Bi

0.5

Sb

1.5

Te

3

PLD

SiO

2

/Si 1 250 2 759.36 94.90 2.49 1.00 0.75[63]

MgO 575 361.00 250.00 2.22 1.09 0.61[24]

>200 1 854.41 139.17 3.59 [64]

Graphene/SiO

2

/

CVDSb

2

Te

3

Plasma-enhanced

Si(001)

MBE is molecular beam epitaxy; PLD is pulsed laser deposition; CVD is chemical vapor deposition.

· 1114 · 《硅酸盐学报》 J Chin Ceram Soc, 2021, 49(6): 1111–1124 2021年

3 提高功率因子

Sb

2

Te

3

薄膜可以通过多种技术制备,但是其热

电性能还难以满足实际应用的需求,需要进一步提

高ZT值。提高热电薄膜的功率因子是获得高ZT值

的一种常用方法。由式(1)可知,提高电导率和

Seebeck系数能够改善功率因子。

3.1 提高电导率

电导率σ可以表示为:

1/

ne

(4)

其中:ρ为电阻率;n为载流子浓度;e为电子电荷

(1.602×10

−19

C);μ为载流子迁移率

[65]

。由式(4)可知,

提高热电材料的电导率,需要提高载流子迁移率或

载流子浓度。

调节退火温度或者沉积温度是提高薄膜载流子

迁移率的有效方法。载流子迁移率与材料中的多种

散射机构密切相关

[6667]

,在Sb

2

Te

3

薄膜中主要散射

机构是电离杂质散射和晶界散射。室温沉积的

Sb

2

Te

3

薄膜往往电离杂质多,结晶度低,晶界多,

因此性能不佳。对薄膜进行退火热处理或调节薄膜

沉积温度可以有效地降低电离杂质,提高薄膜结晶

度,增加晶粒尺寸,减少晶界,从而减少电离杂质

散射和晶界散射,提高载流子迁移率、电导率和功

率因子

[42,62,6875]

。Fang

[70]

等、Fan

[68]

等、Kim

[76]

等研

究了退火温度对Sb

2

Te

3

基薄膜载流子迁移率的影

响。实验发现室温沉积所制备薄膜的载流子迁移率

在退火后明显提高,而且随着退火温度的升高不断

增加。综合文献报道结果,为获得最高的功率因子,

Sb

2

Te

3

薄膜的最佳退火温度一般为523~673 K,如

表2所示。此外,Sb

2

Te

3

薄膜的最佳沉积温度一般

为493~543 K,如表3所示。

表2 Sb

2

Te

3

薄膜的最佳退火温度及室温热电性能

Table 2 Optimal annealing temperatures of Sb

2

Te

3

thin films and corresponding thermoelectric properties at room temperature

Film Preparation technique Optimal annealing temperature/K

573

573

523

673

673

σ/(Scm

−1

)

650.00

1 304.00

1 170.00

2 010.00

380.00

S/(μVK

−1

)

125.00

100.00

123.90

106.00

178.00

S

2

σ/(mWm

−1

K

−2

)

1.02

1.80

2.26

1.20

Reference

[39]

[70]

[68]

[76]

Sb

2

Te

3

Magnetron sputtering

Sb

2

Te

3

Electrodeposition

Sb

2

Te

3

Sb

2

Te

3

Magnetron sputtering

Ion beam sputtering

1.36 [41]

sputtering Bi

0.5

Sb

1.5

Te

3

Magnetron

表3 Sb

2

Te

3

薄膜的最佳沉积温度及室温热电性能

Table 3 Optimal deposition temperatures of Sb

2

Te

3

thin films and corresponding thermoelectric properties at room temperature

Film

Sb

2

Te

3

Preparation technique

Magnetron sputtering

Optimal deposition temperature/K

523

493

503

543

σ/(Scm

−1

)

2 660.00

S/(μVK

−1

)

113.00

S

2

σ/(mWm

−1

K

−2

) Reference

3.26

1.78

2.80

1.78

[77]

[78]

[79]

[80]

Sb

2

Te

3

Evaporation

Sb

2

Te

3

Evaporation

Sb

2

Te

3

Evaporation

1 000.00 133.00

960.00 171.00

800.00 149.00

由于Te的蒸气压较高,如果退火温度或沉积温

度过高,Te元素则容易蒸发,从而改变薄膜成分,

增加薄膜缺陷,降低材料的热电性能

[39,8182]

。为了获

得符合化学计量比的Sb

2

Te

3

基薄膜,可以在磁控溅射

沉积时采用Te靶与其他靶材共溅的方式

[54,8384]

,或

者在蒸发沉积中采用Te源与其他蒸发源共蒸发的

方式

[51,78]

来增加Te的沉积量,从而弥补Te的损失。

此外,改变退火时的气氛也是一种减少Te蒸发的方

法。Schumacher等

[59]

发现在Te气氛下退火,

(Bi

x

Sb

1-x

)

2

Te

3

薄膜中Te的蒸发量明显减少。

薄膜的择优取向也会影响载流子迁移率。如前

所述,Sb

2

Te

3

基材料的电导率具有明显的各向异性,

载流子沿不同晶面的传输性能差异较大,因此可以

通过控制薄膜生长的取向来优化载流子迁移率。表4

和图2a~图2d列举了文献报道的无序薄膜、(0 1 5)

和(0 0 l)取向薄膜的热电性能。从无序薄膜到(0 1 5)

取向再到(0 0 l)取向的薄膜,载流子迁移率大幅度增

加,电导率显著提高,与此同时,Seebeck系数也

有明显改善。因此,薄膜的功率因子有大幅度提升。

图2e是Sb

2

Te

3

(0 0 l)和(0 1 5)晶面的示意图

[85]

。理

论计算表明,沿(0 0 l)方向的原子密度比沿(0 1 5)方

向的密度小,载流子沿(0 0 l)方向受到原子散射更

第49卷第6期 易 文 等:Sb

2

Te

3

基热电薄膜的研究进展 · 1115 ·

火后,薄膜从(0 1 5)取向转变成(0 0 l)取向,载流子

少,因此沿该方向择优生长的薄膜具有更高的载流

迁移率从36.10 cm

2

/(Vs)增加到106.30 cm

2

/(Vs),

子迁移率

[52]

在薄膜的制备过程中,沉积温度

[52,54]

、沉积速率因子从1.42 mW/(mK

2

)增加到4.82 mW/(mK

2

)。

[49,86]

、气体压强

[8788]

、退火温度

[53]

等因素均会影除了提高载流子迁移率,提高材料的载流子浓

度也能获得较高的电导率。适当的元素掺杂能够有

响薄膜的择优取向,调控这些参数能够获得高度取

效调控热电材料的能带结构,这是一个提高载流子向的Sb

2

Te

3

薄膜。Mu等

[52]

用磁控溅射方法在

浓度的常用方法

[8992]

。表5列举了Cu掺杂前后

473~723 K范围内制备了不同沉积温度的

Bi

0.5

Sb

1.5

Te

3

薄膜,发现随着沉积温度的增加,薄膜

Sb

2

Te

3

基块体和薄膜的热电性能。Cu掺杂有效提

择优取向经历了从(0 1 5)到(1 0 10)再到(0 0 l)的转高了Sb

2

Te

3

材料的载流子浓度,使得材料的电导

变,载流子迁移率从4.00 cm

2

/(Vs)增加到

率、功率因子和ZT值显著提升

[9396]

。目前,有关

62.50 cm

2

/(Vs),

掺杂对Sb

2

Te

3

薄膜热电性能影响的研究尚不充分,

功率因子从0.10 mW/(mK

2

)增加到

3.80 mW/(mK

2

)。

在该领域进一步探索有望获得性能优异的Sb

2

Te

3

Zhu等

[53]

用磁控溅射方法在723 K

制备了(0 1 5)取向的Bi

0.5

Sb

1.5

Te

3

薄膜。在573 K退基薄膜。

表4 具有不同择优取向Sb

2

Te

3

薄膜的室温热电性能

Table 4 Thermoelectric properties of Sb

2

Te

3

thin films with different preferential orientations at room temperature

Reference Preferential orientation

[54]

n×10

19

/cm

−3

9.50

μ/(cm

2

V

−1

s

−1

)

27.00

σ/(Scm

−1

)

410.00

S/(μVK

−1

)

157.00

S

2

σ/(mWm

−1

K

−2

)

1.01

Ordinary 12.60 13.00 250.00 113.00 0.32

(0 1 5)

(0 0 l)

(0 1 5)

3.10 161.00 820.00 229.00 4.30

[97]

Ordinary 9.10 20.00 280.00 175.00 0.86

(0 0 l) 4.20 89.00 670.00 214.00 3.07

Ordinary 5.20 4.00 30.00 189.00 0.10

(0 1 5) 7.00 16.40 180.00 189.00 0.60

(0 0 l) 7.90 62.50 800.00 219.00 3.80

[52]

图2 具有不同择优取向Sb

2

Te

3

薄膜的室温热电性能

[52,54,97]

及Sb

2

Te

3

(0 0 l)和(0 1 5)晶面示意图

Fig. 2 thermoelectric properties of Sb

2

Te

3

thin films with different preferential orientations at room temperature

[52,54,97]

and the

schematic diagram of (0 0 l) and (0 1 5) planes for Sb

2

Te

3

· 1116 · 《硅酸盐学报》 J Chin Ceram Soc, 2021, 49(6): 1111–1124 2021年

表5 Cu掺杂对Sb

2

Te

3

基材料热电性能的影响

Table 5 Effects of Cu doping on the thermoelectric properties of Sb

2

Te

3

based materials

Reference Material n×10

19

/cm

−3

[94]

σ/(Scm

−1

) S

2

σ/(mWm

−1

K

−2

) ZT Type

2.03

3.36

0.25

2.50

0.27 (480 K)

0.38 (480 K)

0.70

Bulk

0.95

0.15

Bulk

1.20

Thin film

Bi

0.5

Sb

1.5

Te

3

2.00 400.00

Cu

0.005

Bi

0.5

Sb

1.495

Te

3

4.00 1 400.00

[95]

Bi

0.5

Sb

1.5

Te

3

2.50 90.00

Cu

0.6

(Bi

0.5

Sb

1.5

Te

3

)

99.4

6.50 1 100.00

320.00

460.00

[96]

Sb

2

Te

3

Cu

4.4

(Sb

2

Te

3

)

95.6

12.69

19.46

3.2 提升Seebeck系数

简并半导体的Seebeck系数根据Mott关系可表

示为:

S

π

2

k

2

B

3e

T{

d[ln(

(E))]

dE

}

E

E

F

(5)

π

2

k

2

B

3e

T{

d[ln(n(E))]

dE

d[ln(

(E))]

dE

}

E

E

F

(6)

其中:k

B

为Boltsman常数(1.380×10

−23

J/K);E为电

子能量;E

F

为Fermi能。简并半导体中的载流子迁

移率可表示为:

(E)

e

(E)

m

*

(7)

其中

τ(E)

为载流子弛豫时间;

m*

为载流子有效质

[9899]

。根据式

(6)

和式

(7)

可知,提高

d[ln(

(E))]/dE

将会提高

d[ln(

(E))]/dE

,从而提高

Seebeck

系数。

理论和实验发现,能量过滤效应可以提高

d[ln(

(E))]/dE

[98]

。在材料中引入第二相纳米颗粒会

引起能带弯曲,从而在纳米颗粒和基体之间的界面

处形成势垒,使能量较低的载流子被选择性散射,

该效应即能量过滤效应

[5,100101]

,如图

3a

所示。图

3b

~图

3d

分别展示了

Sb

Ag

Pt

Te

纳米颗粒的

引入所产生的能量过滤效应对薄膜载流子迁移率、

Seebeck

系数和功率因子的影响。在这些纳米颗粒

Sb

2

Te

3

的界面处产生了能量过滤效应,因而降低

了薄膜的载流子迁移率,提高了薄膜的

Seebeck

数和功率因子

[99,102104]

。此外,在材料中引入

Ag

2

Te

[105107]

纳米颗粒也产生了类似的效果。这是由于

大量能量较低的载流子在纳米颗粒与

Sb

2

Te

3

之间

的界面处被散射,抑制了载流子的传输,使得载流

子迁移率下降。这个过程会使载流子弛豫时间对能

量的依赖性增强,即在

Fermi

能级上的

d[ln(

(E))]/dE

增加,从而导致

Seebeck

系数和功率

因子的提高

[99,102,107108]

此外,实验发现某些室温沉积的非晶

Sb

2

Te

3

膜在

373 K

及以下进行退火处理后,其

Seebeck

系数

能达到

300.00~600.00 μV/K

。如果增加退火温度,

Seebeck

系数急剧下降至

200.00 μV/K

以下

[109112]

例如,

Kim

[110]

用电化学沉积方法在室温制备了

Sb

2

Te

3

非晶薄膜,其

Seebeck

系数约为

170.00 μV/K

343 K

5%H

2

+95%N

2

气氛下退火

30 min

Seebeck

系数提高至

480.00 μV/K

。然而,当退火温

度增加到

473 K

时,

Seebeck

系数下降至

38.00 μV/K

经实验分析,发现在

343 K

退火时,基体中形成了

γ-SbTe

相,在该相与

Sb

2

Te

3

的界面处产生的能量过

滤效应提高了

Seebeck

系数。在

473 K

退火时,薄

膜完全晶化,

γ-SbTe

相消失,因此

Seebeck

系数下

降。如果通过其他方法能稳定这种两相共存的微观

组织结构,同时提高电导率,将有望获得性能优越

且结构稳定的

Sb

2

Te

3

薄膜。

4 降低热导率

提高薄膜

ZT

值的另外一个途径是降低热导率。

4

总结了

3

种降低

Sb

2

Te

3

薄膜热导率的方法,分

别为

Bi

2

Te

3

/Sb

2

Te

3

超晶格构造、有机无机杂化和

Bi

2

Te

3

Sb

2

Te

3

固溶。

超晶格结构是一种公认的能显著降低薄膜热导

率的方法

[113114]

。超晶格材料是由两种或多种晶格匹

配良好的材料周期交替沉积构成。金属有机化学气

相沉积

[115116]

MBE

[117118]

PLD

[44]

、电化学沉积

[119]

磁控溅射

[120]

等方法都可以用于制备超晶格材料。图

5

Bi

2

Te

3

/Sb

2

Te

3

超晶格结构的示意图

[121122]

超晶格结构具有各向异性,其热导率降低的机

制在面内和面外方向存在差异。在面内方向,主要

机制是界面漫散射效应

[123125]

,而在面外方向,主

要机制是声子相干导热和界面漫散射效应

[126128]

对于

Bi

2

Te

3

/Sb

2

Te

3

超晶格,其面外方向热导率的降

低比面内方向更显著

[113]

。图

6

Bi

2

Te

3

/Sb

2

Te

3

超晶

格与类似体系块体或薄膜的面外热导率进行了对

比。由图

6

可见,

Bi

2

Te

3

/Sb

2

Te

3

超晶格面外方向热

导率为

0.11~0.31 W/(mK)

,远低于块体和薄膜的面

第49卷第6期 易 文 等:Sb

2

Te

3

基热电薄膜的研究进展 · 1117 ·

外热导率

[44,115,129]

超晶格周期对晶格热导率也有较大影响。图

7

中空心点曲线显示了

Bi

2

Te

3

/Sb

2

Te

3

超晶格晶格热导

率随周期的变化关系

[26]

。当超晶格周期为

2 nm

右时,

Bi

2

Te

3

/Sb

2

Te

3

超晶格的晶格热导率接近固溶

BiSbTe

3

的晶格热导率。随着超晶格周期增加,

晶格热导率降低。当周期为

5 nm

时,

Bi

2

Te

3

/Sb

2

Te

3

超晶格的晶格热导率最低,为

0.22 W/(mK)

。之后,

晶格热导率将随着周期增加而增加,甚至会超过固

溶体

BiSbTe

3

的晶格热导率。

(a) Schematic diagram of the energy filtering effect (b) Carrier mobility of Sb

2

Te

3

thin

(c) Seebeck coefficient (d) Power factor

图3 能量过滤效应和室温下有无能量过滤效应的Sb

2

Te

3

薄膜的载流子迁移率、Seebeck系数和功率因子

[99,102104]

Fig. 3 Schematic diagram of the energy filtering effect and carrier mobility, Seebeck coefficient and power factor of Sb

2

Te

3

thin

films with and without the energy filtering effect, respectively

[99,102104]

(a) Synthesis of Bi

2

Te

3

/Sb

2

Te

3

superlattice (b) Organicinorganic hybridization (c) Synthesis of Bi

2

Te

3

Sb

2

Te

3

solid solution

图4 3种降低Sb

2

Te

3

薄膜热导率的方法

Fig. 4 Three methods to reduce the thermal conductivity of Sb

2

Te

3

thin films

· 1118 · 《硅酸盐学报》 J Chin Ceram Soc, 2021, 49(6): 1111–1124 2021年

超晶格不仅能有效降低热导率,而且可以改善

电学性能。由于在面外方向受到能量过滤效应

[130]

热离子发射

[131]

等因素的影响,面内方向

Fermi

级附近的态密度显著增加

[132]

,使得超晶格面外和

面内的电学性能都有所提高。

Venkatasubramaniam

[115]

发现,与

(Bi

0.5

Sb

0.5

)

2

Te

3

合金相比,

Bi

2

Te

3

/

Sb

2

Te

3

超晶格面内方向的载流子散射更小,因此面内

空穴迁移率高达

~420.00 cm

2

/(Vs)

,远高于

(Bi

0.5

Sb

0.5

)

2

Te

3

合金的空穴迁移率

(~88.00 cm

2

/(Vs))

另一方面,实验数据显示两者电导率相同,由于超

晶格的迁移率更高,则其载流子浓度更低,因此,

Seebeck

系数更高。

Bi

2

Te

3

/Sb

2

Te

3

超晶格的

Seebeck

系数最大为

260 μV/K,

(Bi

0.5

Sb

0.5

)

2

Te

3

Seebeck

系数仅为

~97.00 μV/K

。由于

Bi

2

Te

3

/Sb

2

Te

3

超晶格降低了热导率并提高了功率因子,因此制备

超晶格薄膜将获得优异的热电性能。

图5 Bi

2

Te

3

/Sb

2

Te

3

超晶格晶体结构示意图

Fig. 5 Schematic diagram of the crystal structure of the

Bi

2

Te

3

/Sb

2

Te

3

superlattice

有机无机杂化是另一种降低热导率的有效方

法。利用复合技术,将电学性能良好的

Sb

2

Te

3

低热导率的有机化合物复合,能够实现优势互补。

在不显著影响电学性能的情况下,降低

Sb

2

Te

3

热导率,从而获得较高的

ZT

[133]

。实验发现,

Sb

2

Te

3

CH

3

NH

3

I

复合能有效降低

Sb

2

Te

3

薄膜

的热导率

[134135]

。例如,

Wei

[135]

用热蒸发方法

制备了

Sb

2

Te

3

/CH

3

NH

3

I

杂化薄膜,经过退火处理

后,杂化薄膜热导率为

0.68 W/(mK)

,而纯的

Sb

2

Te

3

薄膜热导率为

1.25 W/(mK)

。这是因为

Sb

2

Te

3

/CH

3

NH

3

I

的界面有效散射了声子,再加上薄

膜中空位和晶界对声子的散射,使得杂化薄膜的热

导率降低。此外,在

CH

3

NH

3

I

Sb

2

Te

3

的界面处产

生了能量过滤效应,使得

Seebeck

系数也得到了提

高。杂化薄膜室温

Seebeck

系数为

156.12 μV/K

,而

纯的薄膜

Seebeck

系数仅为

34.31 μV/K

图6 Bi

2

Te

3

/Sb

2

Te

3

超晶格与类似体系块体或薄膜的面外方向

热导率的比较

[44,115,129]

Fig. 6 Comparison of the cross-plane lattice thermal

conductivity of the Bi

2

Te

3

/Sb

2

Te

3

superlattice and

other materials

[44,115,129]

图7 晶格热导率随Bi

2

Te

3

/Sb

2

Te

3

超晶格周期的变化(空心

点)

[26]

Fig. 7 Dependence of the lattice thermal conductivity on the

period of Bi

2

Te

3

/Sb

2

Te

3

superlattices (empty dots)

[26]

此外,制备

Bi

2

Te

3

Sb

2

Te

3

固溶体薄膜也可以降

Sb

2

Te

3

薄膜的热导率。

Bi

2

Te

3

Sb

2

Te

3

有类似的

晶体结构。将

Bi

2

Te

3

固溶到

Sb

2

Te

3

体系中,会在

Sb

2

Te

3

中引入大量点缺陷,从而引起晶格畸变,对

声子的散射作用增强,因而显著降低晶格热导率。

此外,由于空穴受到的散射作用较小,电学性能不

会明显降低

[89,136]

Rieger

[137]

用物理气相沉积

(PVD)

制备了沿

c

轴外延生长的

(Sb

1−x

Bi

x

)

2

Te

3

第49卷第6期 易 文 等:Sb

2

Te

3

基热电薄膜的研究进展 · 1119 ·

(x=0.00, 0.07, 0.12, 0.24, 1.00)

薄膜。当

x

0.00

1.00

时,室温下的面外热导率分别为

~2.20 W/(mK)

~1.50 W/(mK)

。随着

x

0.00

增加到

0.24

,面外

热导率不断下降。当

x

0.24

时,面外热导率达到

最低值,即

~0.60 W/(mK)

目前准确测量薄膜热导率仍是一个挑战,薄膜

热导率测试过程中不必要的热损失和接触热阻都会

给测试结果带来一定的误差

[138139]

。尽管如此,从

上述文献报道的结果看,

Bi

2

Te

3

/Sb

2

Te

3

超晶格、有

机无机杂化薄膜、

Bi

2

Te

3

Sb

2

Te

3

固溶体薄膜的热导

率仍然低于纯

Sb

2

Te

3

薄膜的热导率。因此,上述

3

种方法能够降低

Sb

2

Te

3

基薄膜的热导率。

5 总结与展望

Sb

2

Te

3

基薄膜是一种温室热电性能优异的材

料,其制备方法包括热蒸发、溅射、电化学沉积、

MBE

PLD

CVD

等。从提高电导率、提升

Seebeck

系数和降低热导率

3

个方面介绍了优化

Sb

2

Te

3

基薄

膜热电性能的方法。提高电导率的方法包括热处理、

取向控制和掺杂。热处理和取向控制可以减少载流

子散射,从而提高载流子迁移率,而在薄膜中掺杂

合适的元素能够提高载流子浓度。提升

Seebeck

数主要是通过能量过滤效应实现。在

Sb

2

Te

3

基体中

引入纳米颗粒可以产生能量过滤效应,使得载流子

弛豫时间对能量的依赖性增加,从而提升

Seebeck

系数。

Bi

2

Te

3

/Sb

2

Te

3

超晶格、有机无机杂化和

Bi

2

Te

3

Sb

2

Te

3

固溶是降低热导率的有效方法。超晶

格由于其特殊的结构能够有效散射声子,使热导率

显著降低。通过有机无机杂化,将电学性能良好的

Sb

2

Te

3

与低热导率的有机化合物复合,能实现不同

材料的优势互补。将

Bi

2

Te

3

Sb

2

Te

3

固溶,会在

Sb

2

Te

3

中引入大量的点缺陷,从而强烈散射声子。

上述方法一般着眼于优化

Sb

2

Te

3

薄膜的某个性

能参数。但热电材料的电学和热学性能参数相互耦

合,因此难以同时优化多个性能参数。例如:提高载

流子浓度,往往能够提高电导率,但是会降低

Seebeck

系数

[1,5]

。提高电导率,能够提高功率因子,但是会

导致载流子热导率增大,从而增加总热导率

[140]

。缺

陷能降低晶格热导率,但是也可能会降低载流子迁

移率

[21,141142]

。因此,未来需要进一步探索协同优

化多个热电性能参数的方法。超晶格薄膜虽然成本

高,工艺复杂,但是它利用高界面密度增加了声子

散射,降低了热导率,同时利用量子限域效应、能

量过滤效应、热离子发射等提高了电学性能,使多

个热电参数均得到了优化

[108,113,115116]

。此外,制备

纳米复合材料的方法能够通过优化能带结构和微观

结构来提高基体材料

Fermi

能级附近的态密度,增

加声子散射,实现热电性能的协同优化

[143144]

,该

方法在块体材料中被广泛应用,但在薄膜中的应用

有待进一步探索。

Sb

2

Te

3

基热电薄膜研究相比,

Sb

2

Te

3

基微型

热电器件的研究还相对较少,未来需要在微型热电

器件或柔性热电器件的设计开发方面展开深入研

究。微型热电器件的结构一般可分为垂直结构和面

内结构

[17,145146]

。垂直结构的优点是吸热面积大、

热能利用率高,缺点是界面电阻大、难以形成大温

差。面内结构的优点是易于形成大温差、制备简单,

缺点是器件吸热面积小、基底漏热和内阻较高。器

件的结构对其能量转换效率等性能有着重要的影

[147]

。张骐昊等

[148]

提出了器件优化设计逻辑框架,

阐述了热电器件基本的设计原则,为器件设计提供

了思路图。在器件制作成型方面也有一些问题需要

解决。例如,热电材料与电极不匹配、结合状态差

会降低器件的能量转换效率、可靠性和使用寿命,

因此需要选择合适的电极和连接方式

[149151]

;在高

温端热电材料和电极的界面处容易发生相互扩散,

需要在热电材料和电极之间引入过渡层

[152153]

此外,热电薄膜的测试还存在诸多问题,薄膜

材料和器件的热电性能参数测试原理及技术亟需发

展完善。目前,薄膜电导率测试通常采用四探针法

和范德堡法

[154156]

Seebeck

系数测试通常有微分法

和积分法

[157158]

。热导率的表征技术可分为

2

大类,

即稳态方法和瞬态方法。其中,瞬态法又可分为时

域法和频域法

[138]

。每种方法都有自身的优点和不

足,需要综合考虑样品的尺寸、测试的温度范围、

所需的测试精度等因素选择合适的方法。同时也应

当注意

Sb

2

Te

3

薄膜面内面外的电学和热学性能存在

差异,要选择合适的方法进行测试。为了确保结果

的准确性和可信度,还可以采用多种测试技术对样

品进行重复测试

[138]

。目前还没有一种成熟的技术可

以在一个样品上完成

3

个热电参数的测量,相关研

究有待深入展开

[150]

当前,虽然在提升

Sb

2

Te

3

基热电薄膜

ZT

值、

优化热电器件结构、提升器件能量转换效率和准确

测量薄膜热电性能参数等方面还存在很多困难和挑

战,但是越来越多的研究人员正投身于相关研究,

学科交叉越发紧密,相信未来在

Sb

2

Te

3

基热电薄膜

研究和应用方面会有更大的突破。

· 1120 · 《硅酸盐学报》 J Chin Ceram Soc, 2021, 49(6): 1111–1124 2021年

参考文献:

[1] ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in

high-efficiency thermoelectric materials [J]. Adv Mater, 2017, 29(14):

1605884.

[2] LI C, JIANG F, LIU C, et al. Present and future thermoelectric

materials toward wearable energy harvesting [J]. Appl Mater Today,

2019, 15: 543557.

[3] SOLEIMANI Z, ZORAS S, CERANIC B, et al. A review on recent

developments of thermoelectric materials for room-temperature

applications [J]. Sustain Energy Techn, 2020, 37: 100604.

[4] YU Y, ZHU W, KONG X, et al. Recent development and application of

thin-film thermoelectric cooler [J]. Front Chem Sci Eng, 2020, 14(4):

492503.

[5] YANG L, CHEN Z G, DARGUSCH M S, et al. High performance

thermoelectric materials: Progress and their applications [J]. Adv

Energy Mater, 2018, 8(6): 1701797.

[6] ELSHEIKH M H, SHNAWAH D A, SABRI M F M, et al. A review on

thermoelectric renewable energy: Principle parameters that affect their

performance [J]. Renew Sust Energ Rev, 2014, 30: 337355.

[7] SNYDER G J, TOBERER E S. Complex thermoelectric materials [J].

Nat Mater, 2008, 7(2): 105114.

[8] HE J, TRITT T M. Advances in thermoelectric materials research:

Looking back and moving forward[J]. Science, 2017, 357(6358):

eaak9997.

[9] 张宗委, 王心宇, 刘一杰, 等. 热电能源材料研究进展[J]. 硅酸盐

学报, 2018, 46(2): 288305.

ZHANG Zongwei, WENG Xinyu, LIU Yijie, et al. J Chin Ceram Soc,

2018, 46(2): 288305.

[10] MAO J, LIU Z, REN Z. Size effect in thermoelectric materials [J]. npj

Quantum Mater, 2016, 1(1): 16028.

[11] HICKS L, DRESSELHAUS M. Use of quantum-well superlattices to

obtain a high figure of merit from nonconventional thermoelectric

materials [J]. MRS Online Proceedings Library, 1993, 326: 413418.

[12] HICKS L, DRESSELHAUS M S. Thermoelectric figure of merit of a

one-dimensional conductor[J]. Phys Rev B, 1993, 47(24): 16631

16643.

[13] HICKS L, DRESSELHAUS M S. Effect of quantum-well structures on

the thermoelectric figure of merit[J]. Phys Rev B, 1993, 47(19):

1272712731.

[14] FENG J J, ZHU W, DENG Y. An overview of thermoelectric films:

Fabrication techniques, classification, and regulation methods [J]. Chin

Phys B, 2018, 27(4): 047210.

[15] NOZARIASBMARZ A, COLLINS H, DSOUZA K, et al. Review of

wearable thermoelectric energy harvesting: From body temperature to

electronic systems [J]. Appl Energ, 2020, 258: 114069.

[16] DU Y, XU J Y, PAUL B, et al. Flexible thermoelectric materials and

devices [J]. Appl Mater Today, 2018, 12: 366388.

[17] YAN J, LIAO X, YAN D, et al. Review of micro thermoelectric

generator [J]. J Microelectromech S, 2018, 27(1): 118.

[18] NOZARIASBMARZ A, SUAREZ F, DYCUS J H, et al.

Thermoelectric generators for wearable body heat harvesting: Material

and device concurrent optimization [J]. Nano Energy, 2020, 67:

104265.

[19] ROWE D M. CRC Handbook of Thermoelectrics [M]. Florida: CRC

press, 2018: 211213.

[20] NOLAS G S, SHARP J, GOLDSMID J. Thermoelectrics: basic

principles and new materials developments [M]. New York:

Springer-Verlag Berlin Heidelberg, 2013: 123131.

[21] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of

nanostructured bismuth antimony telluride bulk alloys [J]. Science,

2008, 320(5876): 634638.

[22] CHEN Y, HOU X, MA C, et al. Review of development status of

Bi

2

Te

3

-based semiconductor thermoelectric power generation [J]. Adv

Mater Sci Eng, 2018, 2018: 1210562.

[23] SOLEIMANI Z, ZORAS S, CERANIC B, et al. A review on recent

developments of thermoelectric materials for room-temperature

applications [J]. Sustain Energy Techn, 2020, 37: 100604.

[24] KIM S I, HWANG S, ROH J W, et al. Experimental evidence of

enhancement of thermoelectric properties in tellurium nanoparticle-

embedded bismuth antimony telluride [J]. J Mater Res, 2012, 27(19):

24492456.

[25] TAN M, HAO L, LI H, et al. Approaching high-performance of

ordered structure Sb

2

Te

3

film via unique angular intraplanar grain

boundaries [J]. Sci Rep, 2020, 10(1): 5978.

[26] VENKATASUBRAMANIAN R. Lattice thermal conductivity

reduction and phonon localizationlike behavior in superlattice

structures [J]. Phys Rev B, 2000, 61(4): 30913097.

[27] ZHU T J, HU L P, ZHAO X B, et al. New insights into intrinsic point

defects in V

2

VI

3

thermoelectric materials [J]. Adv Sci, 2016, 3(7):

1600004.

[28] TAKASHIRI M. Thin films of bismuth-telluride-based alloys [C]

//Mele Paolo, Narducci Dario, Ohta Michihiro, eds. Thermoelectric

Thin Films: Materials and Devices[M]. Cham: Springer International

Publishing, 2019: 129.

[29] WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric

properties of bismuth telluride [J]. Adv Electron Mater, 2019, 5(6):

1800904.

[30] FANG T, LI X, HU C L, et al. Complex band structures and lattice

dynamics of Bi

2

Te

3

-based compounds and solid solutions [J]. Adv

Funct Mater, 2019, 29(28): 1900677.

[31] LOŠŤÁK P, STARÝ Z, HORÁK J, et al. Substitutional defects in

Sb

2

Te

3

crystals [J]. Phys Status Solidi A, 1989, 115(1): 8796.

[32] HORÁK J, DRAŠAR Č, NOVOTNÝ R, et al. Non-stoichiometry of

the crystal lattice of antimony telluride [J]. Phys Stat Sol (A), 1995,

149(2): 549556.

[33] STARÝ Z, HORÁK J, STORDEUR M, et al. Antisite defects in

Sb

2−x

Bi

x

Te

3

mixed crystals [J]. J Phys Chem Solids, 1988, 49(1):

2934.

[34] RIEGER F, KAISER K, BENDT G, et al. Low intrinsic c-axis thermal

conductivity in PVD grown epitaxial Sb

2

Te

3

films [J]. J Appl Phys,

2018, 123(17): 175108.

[35] GOLDSMID H J. The thermal conductivity of bismuth telluride [J].

Proc Phys Soc B, 1956, 69(2): 203209.

[36] DELVES R T, BOWLEY A E, HAZELDEN D W, et al. Anisotropy of

the electrical conductivity in bismuth telluride [J]. Proc Phys Soc, 1961,

78(5): 838844.

[37] LEE W Y, PARK N W, AHN J Y, et al. Anisotropic behavior of the

temperature-dependent thermal conductivity in p-Type bismuth

antimony telluride (p-Bi

0.5

Sb

1.5

Te

3

) thin films [J]. J Nanoelectron

Optoelectron, 2017, 12(10): 11231128.

[38] MANZANO C V, ABAD B, ROJO M M, et al. Anisotropic effects on

the thermoelectric properties of highly oriented electrodeposited Bi

2

Te

3

films [J]. Sci Rep, 2016, 6(1): 19129.

[39] TAKAYAMA K, TAKASHIRI M. Multi-layered-stack thermoelectric

第49卷第6期 易 文 等:Sb

2

Te

3

基热电薄膜的研究进展 · 1121 ·

generators using p-type Sb

2

Te

3

and n-type Bi

2

Te

3

thin films by

radio-frequency magnetron sputtering [J]. Vacuum, 2017, 144:

164171.

[40] ZHOU A, FU Q, ZHANG W, et al. Enhancing the thermoelectric

properties of the electroplated Bi

2

Te

3

films by tuning the pulse

off-to-on ratio [J]. Electrochim Acta, 2015, 178: 217224.

[41] HATSUTA N, TAKEMORI D, TAKASHIRI M. Effect of thermal

annealing on the structural and thermoelectric properties of

electrodeposited antimony telluride thin films [J]. J Alloys Compd,

2016, 685: 147152.

[42] ROSTEK R, STEIN N, BOULANGER C. A review of electroplating

for V-VI thermoelectric films: From synthesis to device integration [J].

J Mater Res, 2015, 30(17): 25182543.

[43] LAL S, GAUTAM D, RAZEEB K M. Optimization of annealing

conditions to enhance thermoelectric performance of electrodeposited

p-type BiSbTe thin films [J]. APL Mater, 2019, 7(3): 031102.

[44] YAMASAKI I, YAMANAKA R, MIKAMI M, et al. Thermoelectric

properties of Bi

2

Te

3

/Sb

2

Te

3

superlattice structure[C] //Seventeenth

International Conference on Thermoelectrics, Nagoya, Japan, 1998:

210213.

[45] MAKALA R S, JAGANNADHAM K, SALES B C. Pulsed laser

deposition of Bi

2

Te

3

-based thermoelectric thin films [J]. J Appl Phys,

2003, 94(6): 39073918.

[46] SYMEOU E, NICOLAOU C, KYRATSI T, et al. Enhanced

thermoelectric properties in vacuum-annealed Bi

0.5

Sb

1.5

Te

3

thin films

fabricated using pulsed laser deposition [J]. J Appl Phys, 2019, 125(21):

215308.

[47] SCHOU J. Physical aspects of the pulsed laser deposition technique:

The stoichiometric transfer of material from target to film [J]. Appl

Surf Sci, 2009, 255(10): 51915198.

[48] SHEN H, LEE S, KANG J G, et al. Thickness dependence of the

electrical and thermoelectric properties of co-evaporated Sb

2

Te

3

films[J].

Appl Surf Sci, 2018, 429: 115120.

[49] TAN M, DENG Y, WANG Y. Unique hierarchical structure and high

thermoelectric properties of antimony telluride pillar arrays [J]. J

Nanopart Res, 2012, 14(10): 1204.

[50] TAKASHIRI M, TANAKA S, MIYAZAKI K. Improved thermoelectric

performance of highly-oriented nanocrystalline bismuth antimony

telluride thin films [J]. Thin Solid Films, 2010, 519(2): 619624.

[51] TAN M, DENG Y, HAO Y. Multilayered structure and enhanced

thermoelectric properties of Bi

1.5

Sb

0.5

Te

3

film with preferential growth

[J]. Phys Status Solidi A, 2013, 210(12): 26112616.

[52] MU X, ZHOU H, HE D, et al. Enhanced electrical properties of

stoichiometric Bi

0.5

Sb

1.5

Te

3

film with high-crystallinity via layer-by-

layer in-situ Growth [J]. Nano Energy, 2017, 33: 5564.

[53] ZHU W, DENG Y, WANG Y, et al. Preferential growth transformation

of Bi

0.5

Sb

1.5

Te

3

films induced by facile post-annealing process:

Enhanced thermoelectric performance with layered structure [J]. Thin

Solid Films, 2014, 556: 270276.

[54] TAN M, DENG Y, HAO Y. Enhanced thermoelectric properties and

layered structure of Sb

2

Te

3

films induced by special (0 0 l) crystal

plane [J]. Chem Phys Lett, 2013, 584: 159164.

[55] CAO L, WANG Y, DENG Y, et al. Facile synthesis of preferential

Bi

0.5

Sb

1.5

Te

3.0

nanolayered thin films with high power factor by the

controllable layer thickness [J]. J Nanopart Res, 2013, 15(11): 2088.

[56] ZHENG Z H, FAN P, LUO J T, et al. Enhanced thermoelectric

properties of antimony telluride thin films with preferred orientation

prepared by sputtering a fan-shaped binary composite target [J]. J

Electron Mater, 2013, 42(12): 34213425.

[57] KIM M-Y, OH T-S. Preparation and characterization of Bi

2

Te

3

/Sb

2

Te

3

thermoelectric thin-film devices for power generation [J]. J Electron

Mater, 2014, 43(6): 19331939.

[58] TRUNG N H, SAKAMOTO K, TOAN N V, et al. Synthesis and

evaluation of thick films of electrochemically deposited Bi

2

Te

3

and

Sb

2

Te

3

thermoelectric materials [J]. Materials, 2017, 10(2): 154.

[59] SCHUMACHER C, REINSBERG K G, ROSTEK R, et al.

Optimizations of pulsed plated p and n-type bi

2

Te

3

-Based ternary

compounds by annealing in different ambient atmospheres [J]. Adv

Energy Mater, 2013, 3(1): 95104.

[60] THIET D V, QUANG N V, HAI N T M, et al. Optimizing the carrier

density and thermoelectric properties of Sb

2

Te

3

films by using the

growth temperature [J]. J Korean Phys Soc, 2018, 72(8): 915919.

[61] AABDIN Z, PERANIO N, WINKLER M, et al. Sb

2

Te

3

and Bi

2

Te

3

thin

films grown by room-temperature MBE [J]. J Electron Mater, 2012,

41(6): 14931497.

[62] SYMEOU E, PERVOLARAKI M, MIHAILESCU C N, et al.

Thermoelectric properties of Bi

0.5

Sb

1.5

Te

3

thin films grown by pulsed

laser deposition [J]. Appl Surf Sci, 2015, 336: 138142.

[63] CHANG H C, CHEN C H, KUO Y K. Great enhancements in the

thermoelectric power factor of BiSbTe nanostructured films with

well-ordered interfaces [J]. Nanoscale, 2013, 5(15): 70177025.

[64] LEE C W, KIM G H, CHOI J W, et al. Improvement of thermoelectric

properties of Bi

2

Te

3

and Sb

2

Te

3

films grown on graphene substrate [J].

Phys Status Solidi RRL, 2017, 11(6): 1700029.

[65] ALAM H, RAMAKRISHNA S. A review on the enhancement of

figure of merit from bulk to nano-thermoelectric materials [J]. Nano

Energy, 2013, 2(2): 190212.

[66] SHUAI J, MAO J, SONG S, et al. Tuning the carrier scattering

mechanism to effectively improve the thermoelectric properties [J].

Energy Environ Sci, 2017, 10(3): 799807.

[67] HU C. Modern Semiconductor Devices for Integrated circuits [M].

Upper Saddle River, NJ: Prentice Hall, 2010: 4043.

[68] FAN P, ZHENG Z H, LIANG G X, et al. Thermoelectric

characterization of ion beam sputtered Sb

2

Te

3

thin films [J]. J Alloys

Compd, 2010, 505(1): 278280.

[69] KIM J, LIM J H, MYUNG N V. Composition- and crystallinity-

dependent thermoelectric properties of ternary Bi

x

Sb

2-x

Te

y

films [J].

Appl Surf Sci, 2018, 429: 158163.

[70] FANG B, ZENG Z G, YAN X X, et al. Effects of annealing on

thermoelectric properties of Sb

2

Te

3

thin films prepared by radio

frequency magnetron sputtering [J]. J Mater Sci-Mater El, 2013, 24(4):

11051111.

[71] JUNLABHUT P, NUTHONGKUM P, SAKULKALAVEK A, et al.

Enhancing the thermoelectric properties of sputtered Sb

2

Te

3

thick films

via post-annealing treatment [J]. Surf Coat Technol, 2020, 387:

125510.

[72] TYNELL T, GEISHENDORF K, PIONTEK S, et al. Rapid thermal

annealing of Sb

2

Te

3

thin films grown via atomic layer deposition [J].

Thin Solid Films, 2020, 700: 137922.

[73] LIN J M, CHEN Y C, YANG C F, et al. Effect of substrate temperature

on the thermoelectric properties of the Sb

2

Te

3

thin films deposition by

using thermal evaporation method [J]. J Nanomater, 2015, 2015:

135130.

[74] MORIKAWA S, INAMOTO T, TAKASHIRI M. Thermoelectric

· 1122 · 《硅酸盐学报》 J Chin Ceram Soc, 2021, 49(6): 1111–1124 2021年

properties of nanocrystalline Sb

2

Te

3

thin films: Experimental

evaluation and first-principles calculation, addressing effect of crystal

grain size [J]. Nanotechnology, 2018, 29(7): 075701.

[75] 李秦, 檀柏梅, 张建新, 等. 退火时间对Bi/Te多层薄膜结构和热电

性能的影响[J]. 硅酸盐学报, 2016, 44(1): 95103.

LI Qin, TAN Baimei, ZHANG Jianxin, et al. J Chin Ceram Soc, 2016,

44(1): 95103.

[76] KIM D-H, LEE G-H, KIM O-J. The influence of post-deposition

annealing on thermoelectric properties of Bi–Sb–Te films prepared by

sputtering [J]. Semicond Sci Technol, 2007, 22(2): 132136.

[77] CHEN T B, FAN P, ZHENG Z H, et al. Influence of substrate

temperature on structural and thermoelectric properties of antimony

telluride thin films fabricated by RF and DC cosputtering [J]. J

Electron Mater, 2012, 41(4): 679683.

[78] GONCALVES L M, ALPUIM P, ROLO A G, et al. Thermal

co-evaporation of Sb

2

Te

3

thin-films optimized for thermoelectric

applications [J]. Thin Solid Films, 2011, 519(13): 41524157.

[79] ZOU H, ROWE D M, WILLIAMS S G K. Peltier effect in a

co-evaporated Sb

2

Te

3

(P)-Bi

2

Te

3

(N) thin film thermocouple [J]. Thin

Solid Films, 2002, 408(1): 270274.

[80] SILVA L W D, KAVIANY M, UHER C. Thermoelectric performance

of films in the bismuth-tellurium and antimony-tellurium systems [J]. J

Appl Phys, 2005, 97(11): 114903.

[81] WANG G Y, ENDICOTT L, UHER C. Recent advances in the growth

of Bi-Sb-Te-Se thin films [J]. Sci Rep, 2011, 3(4): 539560.

[82] KHUMTONG T, SAKULKALAVEK A, SAKDANUPHAB R.

Empirical modelling and optimization of pre-heat temperature and Ar

flow rate using response surface methodology for stoichiometric

Sb

2

Te

3

thin films prepared by RF magnetron sputtering [J]. J Alloys

Compd, 2017, 715: 6572.

[83] TAN M, DENG Y, HAO Y. Enhancement of thermoelectric properties

induced by oriented nanolayer in Bi

2

Te

2.7

Se

0.3

columnar films [J].

Mater Chem Phys, 2014, 146(1/2): 153158.

[84] KIM D H, BYON E, LEE G H, et al. Effect of deposition temperature

on the structural and thermoelectric properties of bismuth telluride thin

films grown by co-sputtering [J]. Thin Solid Films, 2006, 510(1/2):

148153.

[85] LENSCH-FALK J L, BANGA D, HOPKINS P E, et al.

Electrodeposition and characterization of nano-crystalline antimony

telluride thin films [J]. Thin Solid Films, 2012, 520(19): 61096117.

[86] TAN M, WANG Y, DENG Y, et al. Oriented growth of A

2

Te

3

(A = Sb,

Bi) films and their devices with enhanced thermoelectric performance

[J]. Sensor Actuat A-Phys, 2011, 171(2): 252259.

[87] SHEN S, ZHU W, DENG Y, et al. Enhancing thermoelectric properties

of Sb

2

Te

3

flexible thin film through microstructure control and crystal

preferential orientation engineering [J]. Appl Surf Sci, 2017, 414:

197204.

[88] FAN P, LI R, CHEN Y-X, et al. High thermoelectric performance

achieved in Bi

0.4

Sb

1.6

Te

3

films with high (0 0 l) orientation via

magnetron sputtering [J]. J Eur Ceram Soc, 2020, 40(12): 40164021.

[89] GAYNER C, KAR K K. Recent advances in thermoelectric materials

[J]. Prog Mater Sci, 2016, 83: 330382.

[90] LV S, QIAN Z, HU D, et al. A comprehensive review of strategies and

approaches for enhancing the performance of thermoelectric module

[J]. Energies, 2020, 13(12): 3142.

[91] WEI Z, LI Z, LUO P, et al. Simultaneously increased carrier

concentration and mobility in p-type Bi

0.5

Sb

1.5

Te

3

throng Cd doping [J].

J Alloys Compd, 2020, 830: 154625.

[92] 冯建林, 魏长平, 许洁. 掺杂金属离子对Ca

3

Co

4

O

9

的热电性能的影

响[J]. 硅酸盐学报, 2008, 36(11): 15011504.

FENG Jianlin, WEI Changping, XU Jie. J Chin Ceram Soc, 2008,

36(11): 15011504.

[93] TAN C, TAN X, YU B, et al. Synergistically optimized thermoelectric

performance in Bi

0.48

Sb

1.52

Te

3

by hot deformation and Cu doping [J].

ACS Appl Energ Mater, 2019, 2(9): 67146719.

[94] HAO F, QIU P F, SONG Q F, et al. Roles of Cu in the enhanced

thermoelectric properties in Bi

0.5

Sb

1.5

Te

3

[J]. Materials, 2017, 10(3):

251.

[95] WEI Z, WANG C, YOU L, et al. Significantly enhanced thermoelectric

performance of Cu-doped p-type Bi

0.5

Sb

1.5

Te

3

by a hydrothermal

synthesis method [J]. RSC Adv, 2017, 7(65): 4111141116.

[96] SHI D T, WANG R P, WANG G X, et al. Enhanced thermoelectric

properties in Cu-doped Sb

2

Te

3

films [J]. Vacuum, 2017, 145: 347350.

[97] TAN M, DENG Y, WANG Y, et al. Fabrication of Highly (0 0 l)-

textured Sb

2

Te

3

film and corresponding thermoelectric device with

enhanced performance [J]. J Electron Mater, 2012, 41(11): 30313038.

[98] YANG J, YIP H-L, JEN K-Y. Rational design of advanced

thermoelectric materials [J]. Adv Energy Mater, 2013, 3(5): 549565.

[99] AHMED A, HAN S. Optimizing the structural, electrical and

thermoelectric properties of antimony telluride thin films deposited on

aluminum nitride-coated stainless steel foil [J]. Sci Rep, 2020, 10(1):

6978.

[100] GAYNER C, AMOUYAL Y. Energy filtering of charge carriers:

Current trends, challenges, and prospects for thermoelectric materials

[J]. Adv Funct Mater, 2020, 30(18): 1901789.

[101] MINNICH A J, DRESSELHAUS M S, REN Z F, et al. Bulk

nanostructured thermoelectric materials: Current research and future

prospects [J]. Energy Environ Sci, 2009, 2(5): 466479.

[102] ZHANG Z Q, WU Y G, ZHANG H M, et al. Enhancement of Seebeck

coefficient in Sb-rich Sb

2

Te

3

thin film [J]. J Mater Sci-mater El, 2015,

26(3): 16191624.

[103] ZHANG Y, SNEDAKER M L, BIRKEL C S, et al. Silver-based

intermetallic heterostructures in Sb

2

Te

3

thick films with enhanced

thermoelectric power factors [J]. Nano Lett, 2012, 12(2): 10751080.

[104] KO D K, KANG Y J, MURRAY C B. Enhanced thermopower via

carrier energy filtering in solution-processable Pt-Sb

2

Te

3

nanocomposites [J]. Nano Lett, 2011, 11(7): 28412844.

[105] KIM J, LEE K H, KIM S D, et al. Simple and effective fabrication of

Sb

2

Te

3

films embedded with Ag

2

Te nanoprecipitates for enhanced

thermoelectric performance [J]. J Mater Chem A, 2018, 6(2):

349356.

[106] ZHANG Z Q, ZHANG H M, WU Y G, et al. Optimization of the

thermopower of antimony telluride thin film by introducing tellurium

nanoparticles [J]. Appl Phys A-Mater, 2015, 118(3): 10431051.

[107] YOO I J, SONG Y, LIM D C, et al. Thermoelectric characteristics of

Sb

2

Te

3

thin films formed via surfactant-assisted electrodeposition [J].

J Mater Chem A, 2013, 1(17): 54305435.

[108] 陈立东, 刘睿恒, 史迅. 热电材料与器件[M]. 北京: 科学出版社,

2018: 3439.

[109] KIM M-Y, OH T-S. Crystallization behavior and thermoelectric

characteristics of the electrodeposited Sb

2

Te

3

thin films [J]. Thin Solid

Films, 2010, 518(22): 65506553.

[110] KIM J, ZHANG M, BOSZE W, et al. Maximizing thermoelectric

properties by nanoinclusion of γ-SbTe in Sb

2

Te

3

film via solid-state

第49卷第6期 易 文 等:Sb

2

Te

3

基热电薄膜的研究进展 · 1123 ·

phase transition from amorphous Sb-Te electrodeposits [J]. Nano

Energy, 2015, 13: 727734.

[111] KIM J, JUNG H, LIM J H, et al. Facile control of interfacial

energy-barrier scattering in antimony telluride electrodeposits [J]. J

Electron Mater, 2017, 46(4): 23472355.

[112] LIM S K, KIM M Y, OH T S. Thermoelectric properties of the

bismuth-antimony-telluride and the antimony-telluride films

processed by electrodeposition for micro-device applications [J]. Thin

Solid Films, 2009, 517(14): 41994203.

[113] BOTTNER H, CHEN G, VENKATASUBRAMANIAN R. Aspects of

thin-film superlattice thermoelectric materials, devices, and

applications [J]. MRS Bull, 2006, 31(3): 211217.

[114] WINKLER M, LIU X, SCHURMANN U, et al. Current status in

fabrication, structural and transport property characterization, and

theoretical understanding of Bi

2

Te

3

/Sb

2

Te

3

superlattice systems [J]. Z

Anorg Allg Chem, 2012, 638(15): 24412454.

[115] VENKATASUBRAMANIAN R, COLPITTS T, WATKO E, et al.

Experimental evidence of high power factors and low thermal

conductivity in Bi

2

Te

3

/Sb

2

Te

3

superlattice thin-films[C] //Fifteenth

International Conference on Thermoelectrics, Pasadena, USA, 1996:

454458.

[116] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al.

Thin-film thermoelectric devices with high room-temperature figures

of merit [J]. Nature, 2001, 413(6856): 597602.

[117] HANSEN A L, DANKWORT T, WINKLER M, et al. Synthesis and

thermal instability of high-quality Bi

2

Te

3

/Sb

2

Te

3

Super lattice thin

film thermoelectrics [J]. Chem Mater, 2014, 26(22): 65186522.

[118] KONIG J D, WINKLER M, BULLER S, et al. Bi

2

Te

3

-Sb

2

Te

3

superlattices grown by nanoalloying [J]. J Electron Mater, 2011, 40(5):

12661270.

[119] BANGA D, LENSCH-FALK J L, MEDLIN D L, et al. Periodic

modulation of Sb stoichiometry in Bi

2

Te

3

/Bi

2–x

Sb

x

Te

3

multilayers

using pulsed electrodeposition [J]. Cryst Growth Des, 2012, 12(3):

13471353.

[120] PARK N W, LEE W Y, YOON Y S, et al. Achieving out-of-plane

thermoelectric figure of merit ZT=1.44 in a p-type Bi

2

Te

3

/Bi

0.5

Sb

1.5

Te

3

superlattice film with low interfacial resistance [J]. ACS Appl Mater

Interfaces, 2019, 11(41): 3824738254.

[121] VENKATASUBRAMANIAN R, COLPITTS T, WATKO E, et al.

MOCVD of Bi

2

Te

3

, Sb

2

Te

3

and their superlattice structures for

thin-film thermoelectric applications [J]. J Cryst Growth, 1997,

170(1-4): 817821.

[122] VENKATASUBRAMANIAN R, COLPITTS T. Enhancement in

figure-of-merit with superlattice structures for thin-film

thermoelectric devices [J]. MRS Proceedings, 1997, 478: 7384.

[123] CHEN G. Phonon transport in low dimensional [C]// Tritt T Med.

Recent Treads in Thermoelectric Materials Research Ⅲ. New York:

Elsevier, 2001: 203259.

[124] CHEN G. Thermal conductivity and ballistic-phonon transport in the

cross-plane direction of superlattices [J]. Phys Rev B, 1998, 57(23):

1495814973.

[125] CHEN G, NEAGU M. Thermal conductivity and heat transfer in

superlattices [J]. Appl Phys Lett, 1997, 71(19): 27612763.

[126] SIMKIN M V, MAHAN G D. Minimum thermal conductivity of

superlattices [J]. Phys Rev Lett, 2000, 84(5): 927930.

[127] LUCKYANOVA M N, GARG J, ESFARJANI K, et al. Coherent

phonon heat conduction in superlattices [J]. Science, 2012, 338(6109):

936939.

[128] GARG J, CHEN G. Minimum thermal conductivity in superlattices: A

first-principles formalism [J]. Phys Rev B, 2013, 87(14): 140302.

[129] TOUZELBAEV M N, ZHOU P, VENKATASUBRAMANIAN R, et

al. Thermal characterization of Bi

2

Te

3

/Sb

2

Te

3

superlattices [J]. J Appl

Phys, 2001, 90(2): 763767.

[130] MOYZHES B, NEMCHINSKY V. Thermoelectric figure of merit of

metal–semiconductor barrier structure based on energy relaxation

length [J]. Appl Phys Lett, 1998, 73(13): 18951897.

[131] SHAKOURI A, BOWERS J E. Heterostructure integrated thermionic

coolers [J]. Appl Phys Lett, 1997, 71(9): 12341236.

[132] HICKS L D, DRESSELHAUS M S. Effect of quantum-well structures

on the thermoelectric figure of merit [J]. Phys Rev B, 1993, 47(19):

1272712731.

[133] JIN H, LI J, IOCOZZIA J, et al. Hybrid organic-inorganic

thermoelectric materials and devices [J]. Angew Chem Int Edit, 2019,

58(43): 1520615226.

[134] CHEN S, LI F, CHEN Y X, et al. Enhanced thermoelectric properties

of Sb

2

Te

3

/CH

3

NH

3

I hybrid thin films by post-annealing [J]. Inorg

Chem Front, 2020, 7(1): 198203.

[135] WEI M, CHEN T-B, HU J-G, et al. Effect of organic

nano-components on the thermoelectric properties of Sb

2

Te

3

nanocrystal thin film [J]. Scripta Mater, 2020, 185: 105110.

[136] JIANG J, CHEN L, BAI S, et al. Thermoelectric properties of p-type

(Bi

2

Te

3

)

x

(Sb

2

Te

3

)

1−x

crystals prepared via zone melting [J]. J Cryst

Growth, 2005, 277(1): 258263.

[137] RIEGER F, RODDATIS V, KAISER K, et al. Transition into a phonon

glass in crystalline thermoelectric (Sb

1x

Bi

x

)

2

Te

3

films [J]. Phys Rev

Mater, 2020, 4(2): 025402.

[138] WANG H, CHU W, CHEN G. A brief review on measuring methods

of thermal conductivity of organic and hybrid thermoelectric materials

[J]. Adv Electron Mater, 2019, 5(11): 1900167.

[139] ABAD B, BORCA-TASCIUC D A, MARTIN-GONZALEZ M S.

Non-contact methods for thermal properties measurement [J]. Renew

Sust Energ Rev, 2017, 76: 13481370.

[140] TAN G, ZHAO L D, KANATZIDIS M G. Rationally designing

high-performance bulk thermoelectric materials [J]. Chem Rev, 2016,

116(19): 1212312149.

[141] LI J F, LIU W S, ZHAO L D, et al. High-performance nanostructured

thermoelectric materials [J]. NPG Asia Mater, 2010, 2(4): 152158.

[142] ZHOU M, LI J F, KITA T. Nanostructured AgPb

m

SbTe

m+2

system bulk

materials with enhanced thermoelectric performance [J]. J Am Chem

Soc, 2008, 130(13): 45274532.

[143] 陈立东, 熊震, 柏胜强, 等. 纳米复合热电材料研究进展[J]. 无机

材料学报, 2010, 25(6): 561568.

CHEN Lidong, Xiong Zhen, BAI Shengqiang, et al. J Inorg Mater (in

Chinese), 2010, 25(6): 561568.

[144] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions

for low-dimensional thermoelectric materials [J]. Adv Mater, 2007,

19(8): 10431053.

[145] STARK I. Micro Thermoelectric Generators [C] //Brand O, Fedder G

K, Hierold C, eds. Micro Energy Harvesting. John Wiley & Sons,

2015: 245269.

[146] GLATZ W, SCHWYTER E, DURRER L, et al. Bi

2

Te

3

-based flexible

micro thermoelectric generator with optimized design [J]. J

Microelectromech S, 2009, 18(3): 763772.

[147] 陈立东, 刘睿恒, 史迅. 热电材料与器件[M]. 北京: 科学出版社,

· 1124 · 《硅酸盐学报》 J Chin Ceram Soc, 2021, 49(6): 1111–1124 2021年

2018: 163189.

[148] 张骐昊, 柏胜强, 陈立东, 等. 热电发电器件与应用技术:现状、

挑战与展望 [J]. 无机材料学报, 2019, 34(3): 279293.

ZHANG Qihao, BAI Shengqiang, CHEN Lidong, et al. J Inorg Mater

(in Chinese), 2019, 34(3): 279293.

[149] LIN Y-C, YANG C-L, HUANG J-Y, et al. Low-temperature bonding

of Bi

0.5

Sb

1.5

Te

3

thermoelectric material with Cu electrodes using a

thin-film In interlayer [J]. Metall Mater Trans A, 2016, 47(9):

47674776.

[150] SHI X-L, ZOU J, CHEN Z-G. Advanced thermoelectric design: From

materials and structures to devices [J]. Chem Rev, 2020, 120(15):

73997515.

[151] 张骐昊, 刘睿恒, 廖锦城, 等. 填充方钴矿热电器件的结构优化设

计与性能[J]. 硅酸盐学报, 2021, 49(2): 19.

ZHANG Qihao, LIU Ruiheng, LIAO Jincheng, et al. J Chin Ceram

Soc, 2021, 49(2): 19.

[152] BAE N-H, HAN S, LEE K E, et al. Diffusion at interfaces of micro

thermoelectric devices [J]. Curr Appl Phys, 2011, 11(5): S40S44.

[153] MING G, JIEHUA W, JINCHENG L, et al. A high-throughput

strategy to screen interfacial diffusion barrier materials for

thermoelectric modules [J]. J Mater Res, 2019, 34(7): 11791187.

[154] 陈立东, 刘睿恒, 史迅. 热电材料与器件[M]. 北京: 科学出版社,

2018: 5458.

[155] van der PAUW L J. A method of measuring the resistivity and Hall

coefficient on lamellae of arbitrary shape [J]. Philips Techn Rev, 1958,

20: 220224.

[156] HEANEY M B. Electrical conductivity and resistivity [C]//

WEBSTER J G, ed. The measurement, instrumentation and sensors

handbook. Bosa Roca, United States: Springer Science & Business

Media, 2000: 13321345.

[157] WANG C, CHEN F, SUN K, et al. Contributed Review: Instruments

for measuring Seebeck coefficient of thin film thermoelectric

materials: A mini-review [J]. Rev Sci Instrum, 2018, 89(10): 101501.

[158] ZHOU Y, YANG D, LI L, et al. Fast Seebeck coefficient measurement

based on dynamic method [J]. Rev Sci Instrum, 2014, 85(5): 054904.


发布者:admin,转转请注明出处:http://www.yc00.com/web/1712873031a2138977.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信