Learning to Detect a Salient__ Object

Learning to Detect a Salient__ Object


2024年5月19日发(作者:中关村在线攒机配置)

IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.33,NO.2,FEBRUARY2011353

LearningtoDetectaSalientObject

TieLiu,ZejianYuan,JianSun,JingdongWang,NanningZheng,Fellow,IEEE,

XiaoouTang,Fellow,IEEE,andHeung-YeungShum,Fellow,IEEE

Abstract—Inthispaper,ulatethisproblemasabinarylabelingtask

oseasetofnovelfeatures,includingmultiscalecontrast,center-

surroundhistogram,andcolorspatialdistribution,todescribeasalientobjectlocally,regionally,tionalrandom

fieldisler,weextendtheproposedapproachtodetecta

salientoectedalargeimagedatabasecontainingtens

ofthousandsofcarefullylabeledimagesbymultipleusersandavideosegmentdatabase,andconductedasetofexperimentsover

themtodemonstratetheeffectivenessoftheproposedapproach.

IndexTerms—Salientobjectdetection,conditionalrandomfield,visualattention,saliencymap.

Ç

1I

NTRODUCTION

HE

T

humanbrainandvisualsystempaymoreattention

attentionhasbeen

studiedbyresearchersinphysiology,psychology,neural

systems,re

manyapplicationsforvisualattention,forexample,auto-

maticimagecropping[1],adaptiveimagedisplayonsmall

devices[2],image/videocompression,advertisingdesign

[3],andimagecollectionbrowsing[4].Recentstudies[5],

[6],[7]demonstratedthatvisualattentionhelpsobject

recognition,tracking,paper,

westudyoneaspectofvisualattention—salientobject

.1showssomeexamplesofsalientobjects.

Forinstance,peopleareusuallyinterestedintheobjects

inimagesinFig.1,andtheleaf,car,andwomanattractthe

them

salientobjectsorforegroundobjectsthatwearefamiliar

with,applica-

tions,suchasimagedisplayonsmalldevices[2]andimage

collectionbrowsing[4],peoplewanttoshowtheregions

withthemostinterest,paper,

wetrytolocatethesesalientobjectsautomaticallywiththe

suppositionthatasalientobjectexistsinanimage.

.iththeInstituteofArtificialIntelligenceandRobotics,Xi’an

JiaotongUniversity,andtheAnalyticsandOptimizationDepartment,

IBMResearch-China,Building19A2F,ZhongguancunSoftwarePark,8

DongbeiwangWestRoad,HaidianDistrict,Beijing100193,.

E-mail:liultie@.

.rewiththeInstituteofArtificialIntelligenceand

Robotics,Xi’anJiaotongUniversity,28XianningXilu,Xi’an710049,

China.E-mail:yzejian@,nnzheng@.

.iththeVisualComputingGroup,MicrosoftResearchAsia,

5/F,BeijingSigmaCenter,No.49,ZhichunRoad,HaidianDistrict,

Beijing100190,.E-mail:jiansun@.

.withtheMediaComputingGroup,MicrosoftResearchAsia,

5/F,BeijingSigmaCenter,No.49,ZhichunRoad,HaidianDistrict,

Beijing100190,.E-mail:jingdw@.

.withtheDepartmentofInformationEngineering,Chinese

UniversityofHongKong,Shatin,HongKong.

E-mail:xtang@.

.H.-withtheOn-LineServiceDivision,R&D,Microsoft,One

MicrosoftWay,Redmond,WA98052.E-mail:hshum@.

Manuscriptreceived4Dec.2008;revised23Oct.2009;accepted29Nov.

2009;publishedonline2Mar.2010.

ba.

Forinformationonobtainingreprintsofthisarticle,pleasesende-mailto:

tpami@,andreferenceIEEECSLogNumber

TPAMI-2008-12-0834.

DigitalObjectIdentifierno.10.1109/TPAMI.2010.70.

0162-8828/11/$26.00ß2011IEEE

1.1RelatedWork

Mostexistingvisualattentionapproachesarebasedonthe

bottom-upcomputationalframework[8],[9],[10],[11],[12],

[13],[14],[15],[16],wherevisualattentionissupposedtobe

drivenbylow-levelstimulusinthescene,suchasintensity,

contrast,pproachesconsistofthe

followingthreesteps:Thefirststepisfeatureextractionin

whichmultiplelow-levelvisualfeatures,suchasintensity,

color,orientation,texture,andmotion,areextractedfromthe

ondstepissaliency

iencyiscomputedbyacenter-surround

operation[13],self-information[8],orgraph-basedrandom

walk[9]ormalizationand

linear/nonlinearcombination,amastermap[17]ora

saliencymap[14]iscomputedtorepresentthesaliencyof

,afewkeylocationsonthesaliency

mapareidentifiedbywinner-take-all,orinhibition-of-

return,ly,asaliency

modelbasedonlow,middle,andhigh-levelimagefeatures

wastrainedusingthecollectedeyetrackingdata[18].While

theseapproacheshaveworkedwellinfindingafewfixation

locationsinsyntheticandnaturalimages,theyhavenotbeen

abletoaccuratelydetectwherethesalientobjectshouldbe.

Forinstance,themiddlerowinFig.1showsthree

saliencymapscomputedusingItti’salgorithm[13].Note

thatthevisualsaliencyconcentratesonseveralsmalllocal

,thebackground

gridinFig.1a,theshadowinFig.1b,andtheforeground

ghtheleafinFig.1acommands

muchattention,ore,

thesesaliencymapscomputedfromlow-levelfeatures

don’thavethenotationofobjects,andtheyarenotgood

indicationsforwhereasalientobjectislocatedwhile

perusingtheseimages.

Figure-groundsegregationissomehowrelatedtosalient

r,theusuallyfigure-ground

PublishedbytheIEEEComputerSociety

354IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.33,NO.2,FEBRUARY2011

ptobottom:inputimagewitha

salientobject,saliencymapcomputedbyItti’sattentionalgorithm(

),andsaliencymapcomputedbyoursalient

objectdetectionapproach.

segregationalgorithmworkswiththesuppositionofthe

categoryofobjects[19],[20],[21]orwithinteractions[22],

[23].Iftheobjectisassignedagivencategory,thespecific

features,forexample,forcows,canbedefinedspecially,

andthesefeaturescannotbeadoptedforothercategories.

Forinteractivefigure-groundsegmentation,theappearance

modelisusuallysetup,whereforoursalientobject

detection,wedonothavesuchanappearancemodel.

Visualattentionisalsostudiedforsequentialimages,

wherethespatiotemporalcuesfromimagesequencesare

instance,motionfromobjectsorbackgroundshelpsto

indicatethesalientfixations[24],[25],[26].Largemotion[27]

andmotioncontract[24]aresupposedtoinduceprominent

attention,y,thevisualsaliencyfroma

singleimageiscombinedwiththemotionsaliencyforbetter

visualattentiondetection,anddifferentcombinationstrate-

giesareintroducedin[27].Videosurprising[11]isalso

related,whereitdescribestheKullbackLeiblerdivergence

betweenthepriorandposteriordistributionofafeature

isualattentionapproachessufferfromthe

similarshortcomingtothevisualattentionapproachesfor

ticobjectdiscovery[28],[29],[30]deals

withasimilarsalientobjectdetectiontaskforsequential

ectsareextractedandtrackedusingmotion-

basedlayersegmentationin[28]andagenerativemodelof

objectsbydefiningswitchvariablesforcombinatorialmodel

selectionisadoptedin[29].Theunsupervisedvideoobject

discovery[30]combinesthetopicmodelandthetemporal

modelforvideos.

1.2OurApproach

Inthispaper,weinvestigateoneaspectofvisualattention,

namely,rporatethehigh-

levelconceptofthesalientobjectintotheprocessofsaliency

eobservedinFig.2,people

naturallypaymoreattentiontosalientobjectsinimages,

suchasaperson,aface,acar,ananimal,oraroadsign.

Therefore,weformulatesalientobjectdetectionasabinary

labelingproblemthatseparatesasalientobjectfromthe

imagesinourimagedatabaseforsalientobject

detection.

cedetection,welearntodetecta

familiarobject;unlikefacedetection,wedetectafamiliar

yetunknownobjectinanimage.

Wepresentasupervisedapproachtolearntodetecta

,we

modelthesalientobjectdetectionproblembyacondition

randomfield(CRF),whereagroupofsalientfeaturesare

er,thesegmenta-

tionisalsoincorporatedintotheCRFtodetectasalientobject

trowinFig.1shows

,to

overcomethechallengethatwedonotknowwhataspecific

objectorobjectcategoryis,weproposeasetofnovellocal,

regional,andglobalsalientfeaturestodefineageneric

definethesalientfeaturesonthe

motionfieldsimilarlytocapturethespatiotemporalcues.

Then,weconstructalargeimagedatabasewith20,000+well-

estofour

knowledge,itisthefirsttimealargeimagedatabasehasbeen

madeavailableforquantitativeevaluation.

Theremainderofthepaperisorganizedasfollows:

Section2introducestheformulationofthesalientobject

detectionproblem,andthesalientobjectfeaturesare

n4introducestheimage

n5dis-

cussestheconnectionsbetweenourapproachandrelated

approaches,andtheconclusionfollowsinSection6.

2F

ORMULATION

GivenanimageI,werepresentthesalientobjectasabinary

maskA¼fa

x

hpixelx,a

x

2f1;0gisabinarylabel

toindicatewhetherthepixelxbelongstothesalientobject.

Similarly,thesalientobjectsinsequentialimages,

fI

1

;...;I

t

;...;I

N

g,arerepresentedbyasequenceofbinary

masksfA

1

;...;A

t

;...;A

N

g,withA

t

correspondingto

imageI

t

.

Inthispaper,weformulatethesalientobjectdetection

problemasabinarylabelingtaskbyinspectingwhether

tpresentthe

conditionalrandomfieldformulationtothesingle-image


发布者:admin,转转请注明出处:http://www.yc00.com/num/1716061261a2713821.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信