2024年2月8日发(作者:x70参数)
中华眼视光学与视觉科学杂志,2021.
23
(
1
)
Chin
J
Optom
Ophthalmol Vis
Sci,
2021, 23⑴・19・引用本文:王梅洁,廖萱,谭青青,等・【Profiler和iTrace波前像差仪测量健康人眼波
前像差的一致性.中华眼视光学与视觉科学杂志,2021,
23(1): 19-26.
D0I:
103760/
•论著
e
•er^HiTrace波前像差仪测量健康人眼
波前像差的一致性王梅洁
廖萱
谭青青
兰长骏作者单位:川北医学院附属医院眼科
川北医学院眼视光学系,南充637000第一作者:王梅洁(ORCID:
0000-0002-3177-1807),
Email:
*****************
通信作者:兰长骏(ORCID:
0000-0002-1040-9622),
Email:
********************摘要目的:评价「Profiler和iTrace波前像差仪测量健康人眼波前像差的一致性,分析角膜高阶像差与瞳孔
直径的相关性。方法:系列病例研究。连续纳入健康青年受检者96例(96眼),采用r和iTrace
进行波前像差测量,参数包括2~6mm瞳孔直径下角膜和3、5
mm瞳孔直径下全眼高阶像差,包括
总高阶像差(tHOA)、球差(乙°)、彗差(Z「、Z3')和三叶草像差(Z『、Z33)o采用配对r检验、Pearson
相关、Bland-Altman散点图、一致性界限(95%LoA)分析2种设备测量结果的一致性。结果:er
和iTrace测量角膜和全眼tHOA、Z4
ZJ、Z3
Z,"和Zs?的95%LoA均小于0.1
ym.显示一致性较好。
er
和
iTrace
在
4
mm
瞳孔直径下测得的角膜
Z,分别为(0.049
±
0.016
)
pm
和(0.048
±0.016)pim;
6
mm瞳孔直径下,角膜乙。分别为(0.270 ±
0.040
)
um和(0.266
± 0.037
)
“m。2
~
6
mm瞳孔直径下,
er测量的角膜tHOA、乙°、Z「乙‘乙"和Zs?与瞳孔直径呈高度相关(r=0.960、0.916、0.978、0.970、
0.982,0.984,均P<0.05);
iTrace测量的角膜高阶像差与瞳孔直径也呈高度相关(r=0.960、0.916、0.983、
0.970、0.984、0.969,均P<0.05)。3
mm和5
mm瞳孔直径下「Profiler测量的全眼乙°分别为(0.010±
0.008
)
pm
和(0.073
±
0.052
)
pm,角膜乙°
分别为(0.016 ±
0.007
)
pim和(0.116±
0.031
)
pm,同一瞳孔
直径下,全眼乙°小于角膜乙°。结论:er和iTrace测量角膜和全眼高阶像差值具有良好一致性,
二者的高阶像差测量值方面可以相互参考。关键词:er;
iTrace;
一致性;角膜像差;全眼像差;瞳孔直径基金项目:四川省卫计委重点课题项目(18ZD022);南充市校合作重大攻关项目(18SXHZ0492)DOI:
10.3760/
5909-20200525-00217Agreement
between
the
er
and
iTrace
Aberrometers
for
Measuring
the
Wavefront
Aberrations
in
Healthy
Eyes
of
Young
PeopleMeijie
Wang,
Xuan
Liao,
Qingqing
Tan,
Changjun
LanDepartment
of
Ophthalmology,
Affiliated
Hospital
of
North
Sichuan
Medical
College,
Department
of
Ophthalmology
&
Optometry,
North
Sichuan
Medical
College,
Nanchong
637000,
ChinaCorresponding
author:
Changjun
Lan,
Department
of
Ophthalmology, Affiliated
Hospital
of
North
Sichuan
Medical
College,
Department
of Ophthalmology
&
Optometry,
North
Sichuan
Medical
College,
Nanchong
637000,
China (Email:
********************)ABSTRACTObjective:
To
evaluate
the
agreement
between
the
er
and
iTrace
aberrometers
for
measuring
wavefront
aberrations
in
healthy
young
eyes
and
the
correlation
between
corneal
aberration
and
pupil
diameter.
Methods:
Ninety-six
healthy
young
eyes
of 96
healthy
young
persons
were
examined
by
the
er
and
iTrace
in
this
diagnostic
test
study.
Comeal
(2-6
mm
pupil
diameter)
and
ocular
(3
mm
and
5
mm
pupil
diameters)
higher-order
aberrations,
including
total
higher-order
aberrations
(tHOA),
fourth
order
(Z4°)
spherical
aberration
(SA),
vertical
coma
(Z3
'),
horizontal
coma
(Z3'),
vertical
trefoil
(Z3*3),
・20
•中华眼视比学
*-j
视觉科学朵志,2021,
23
(
1
)
Chin
J Optom
Ophthalmol
Vis
Sci,
2021,23(1)and
horizontal
trefoil
(Z33),
were
measured.
Agreement
between
the
two
aberrometers
was
evaluated
by
a
r-test,
Pearson
correlation,
Bland-Altman
and
95%
limits
of
agreement
(95%LoA).
Results:
The
95%LoA
of
the
higher-order
aberrations
measured
by
er
and
iTrace
were
relatively
narrow,
showing
good
agreement.
At
a
4
mm
pupil
diameter,
comeal
Z4° measured
by
er
and
iTrace
were
0.049±0.016
pm
and
0.048±0.016 gm,
respectively.
At
a
6
mm
pupil
diameter,
corneal
Z4°
were
0.270±0.040
pm
and
0.266±0.037
gm,
respectively.
At
a
2-6
mm
pupil
diameter,
corneal
tHOA,
SA
(Z4°),
(Z3 '),
(Z,1),
(Z3'3)
and
(Z
J)
increased
with
an
increase
in
pupil
diameter.
The
corresponding
correlation
coefficients
between
corneal
higher-order
aberrations
and
pupil
diameter were
0.960,
0.916,
0.978,
0.970,
0.982
and
0.984 when
using
er
(all
P<0.05),
and
the
counterparts
were
0.960,
0.916,
0.983,
0.970,
0.984
and
0.969
when
using
iTrace
(all
P<0.05).
At
3
mm
and
5
mm
pupil
diameters,
the
measured ocular
Z4°
were
0.010±0.008 pm
and
0.073±0.052
jim,
respectively,
which
were
smaller
than corneal
Z4°
(0.016±0.007
fim
and
0.116±0.031
|im)
when
using er.
Conclusions:
The
er
and
iTrace
show
good
agreement
in
measuring
wavefront
aberrations
in
healthy
young
words:
er;
iTrace;
agreement;
comeal
aberration;
ocular
aberration;
pupil
diameterFunding:
Key
Project
of
Sichuan
Health
and
Family
Planning
Commission
(18ZD022);
Key
Project
of
Nanchong
City
and
University
Cooperation
(18SXHZ0492)DOI:
10.3760/
15909-20200525-00217人眼并非完美的光学系统,存在低阶像差和
瞳孔直径下角膜、眼内、全眼2~7阶高阶像差值
等,目前广泛用于临床,测量的准确性已得到肯定。
高阶像差。高阶像差主要来源于角膜和晶状体,其
中角膜像差占人眼总像差的80%,是影响视网膜成
本研究旨在通过比较e与iTrace测量的角膜和
全眼波前像差值,对er测量国人眼波前像差参
数测量的准确性进行验证,为临床应用提供参考。像的最主要的因素,而四阶球差(Z/)对视觉质量
影响最大2)。目前波前像差仪已逐渐在临床应用,
如个性化引导角膜屈光手术、屈光性白内障手术个
性化人工晶状体(IOL)的选择、视觉质量评价以及
1对象与方法1.1对象纳入标准:①等效球镜度(SE
)
W
-3.00
D.柱
其他眼科疾病诊疗,在视光学方面还可以指导角膜
塑形镜和眼镜的验配。〔Profiler
(德国Carl
Zeiss公
司)是采用Hartmann-Shack原理的波前像差仪(光
源波长555
nm,
1
500个采样点),同时集Atlas
9000
镜度数W
-1.00
D,最佳矫正视力(BCVA
LogMAR)
角膜地形图(基于Placido盘设计,18个完整的环形,
3
425个角膜测量点)、自动验光仪和角膜曲率计为
优于0;②泪膜功能正常,认知能力正常,能积极
配合检查者;③4周内未配戴硬性角膜接触镜,2周
一体,测量2~7
mm瞳孔直径下角膜曲率、角膜散
内未配戴软性角膜接触镜;④测量前未进行过眼部
侵入性检查;⑤无眼部手术史和外伤史。排除标准:
①有角结膜病变者(如圆锥角膜、角膜瘢痕、翼状
捋肉等);②有葡萄膜炎、青光眼病史者;③晶状体
光、角膜有效屈光力、角膜2~7阶高阶像差值等以
及3
mm和5
mm瞳孔直径下全眼Zernike多项式像
差值。er在国外应用较多,通过对人眼高阶
像差进行量化及处理,确定人眼不同瞳孔直径下的
最适屈光度,结合ion技术,制定个性化镜
片*役与传统的验光配镜比较,能更好适应瞳孔
混浊、眼底黄斑和视网膜病变者。纳入2018年5
—7月在川北医学院附属医院
眼科门诊检查的健康青年人96例,其中男46例,
直径的变化,明显地改善暗视力。er验光结
果具有良好的重复性,且显示出与其他电脑验光仪
女50例;年龄18-28
(21.0±
1.9
)岁;球镜度数
0.00
-
-3.00
(-1.40
±
1.00)D;柱镜度数
0.00~
较好的一致性Hi。er刚进入国内,有必要对
其测量国人眼波前像差的准确性进行评价。iTrace
-1.00
(-0.50
±0.50)Do所有患者由同一位检查者
使用er和iTrace对受检者右眼进行测量。本
研究已获得川北医学院附属医院伦理委员会批准,
批号:2018ER(A)036,所有受检者均签署知情同
视觉质量分析仪(美国Tracey公司)是采用Rayfacing
原理的波前像差仪,
同时集角膜地形图、自
动验光仪和角膜曲率计为一体,可以测量2
~
6
mm
意书。
中华眼视光学与视觉科学杂志,2021
,
23
(
1
)
Chin
J
Optom
Ophthalmol
Vis
Sci,
2021,23(1)・21・1.2像差测量采用0.5%复方托毗卡胺滴眼液(美多丽,日本
Santen公司)滴眼,受检者的右眼散瞳至M
7
mm,
由同一位经验丰富的检查者在同一检查室依次进
行像差测量。受检者瞬目后睁眼充分暴露角膜,
注视er目标图像(彩色条纹的热气球)。检
查者单击瞳孔影像中心部,设备自动对焦,使用
Hartmann-Shack传感器拍摄一系列图像,并将其组
合成一个结果。该设备每次自动连续测量3次,并
选择最优数据传输到计算机作为最终测量结果。
该设备还可以通过传感器栅格图像的完整性分析
受检者泪膜是否稳定,测量结果是否可靠,图像显
示较大空缺者,则重新进行测量。相同检查条件
下,受检者瞬目后睁眼充分暴露角膜,注视iTrace
的Placido盘的红色光标。检查者按屏幕提示进行
对焦,设备自动采集图像获取数据。若结果显示
256个检测点中出现10个以上被排除点,说明测量
结果不可靠,重新进行测量。2种设备测量结束后分析2
~
6
mm瞳孔直径下
角膜和3、5
mm瞳孔直径下全眼的总高阶像差(Total
higher-order
aberration,
tHOA),球差(Spherical
aberration,
SA)(Z4°
三阶彗差(Z「、厶')和三阶
三叶草像差(Z;
Zj)值。1.3统计学方法系列病例研究。采用SPSS
25.0软件行数据
统计和分析。参数的分布情况应用Kolmogorov-
Smirnov
检验,所有测量参数P>0.05,提示符合
正态分布,计数资料以均数土标准差表示。采用
配对/检验、Pearson相关系数、Bland-Altman散
点图、95%—致性界限(95%
limits
of
agreement,
95%LoA)综合分析2种设备的一致性。95%LoA定
义为二者差值平均值±1.96标准差,小于0.1
pm
为临床可接受,范围越窄,一致性越好®
91。以
P<0.05为差异有统计学意义。2结果2.1
er和iTrace测量角膜高阶像差的一致性er和iTrace在2
~
6
mm瞳孔直径下测量
的角膜tHOA、Z4
Z3
Z3
Z「和Z3I值,差异均
无统计学意义(均P>0.05
);二者之间除2
mm瞳孔
直径下角膜tHOA(尸0.619,
P<0.001
)、Zj(尸0.795,
P<0.001
)、Z3'
(r=0.785,
P<0.001)外,余角膜高阶
像差相关系数/•均>0.800,
P<0.001,显示二者相关
性较好。角膜所有高阶像差测量值的95%LoA范围
均较窄,小于0.1
gmo角膜高阶像差均随着瞳孔直
径的增大而增高,与瞳孔直径呈正相关。见表1。2.2
er
ffl
iTrace测量全眼高阶像差的一致性由于er只能分析3
mm和5
mm瞳孔直径
下全眼Zemike函数中各阶像差,所以进行这2个瞳
孔直径下参数分析。【Profiler和订race在3、5
mm瞳
孔直径下测量的全眼tHOA、Z4
Z3
Z3
Z「和
Z3'fl,差异均无统计学意义(均P>0.05),二者之
间测量值除3
mm瞳孔直径下全眼Z3I相关系数a•为
0.571
(P<0.001
)外,余全眼高阶像差相关系数尸均
>0.800
(P<0.001),二者相关性较好,见表2。3
mm
和5
mm瞳孔直径下,2种设备测量全眼高阶像差的
95%LoA范围均较窄,小于0.1
gmo
Bland-Altman
散点图显示每个像差成分测量值仅有极少数点位
于95%LoA以外(见图1
—2)。3
mm和5
mm瞳孔直
径下,全眼球差(乙°)分别为(0.010
±0.008)
Jim、
(0.073
±
0.052)
pm,角膜球差(Z4°)分别为(0.016±
0.007)ym、(0.116±0.031
川m,同一瞳孔直径下,
全眼球差(Z4°)小于角膜球差(Z4°
)o3讨论人眼的高阶像差会导致视敏度和对比敏感度
下降,如角膜屈光手术会增加角膜像差特别是球
差,导致患者术后出现单眼复视、眩光、光晕等,
影响术后视觉质量白内障手术由于角膜切
口的位置、大小以及不恰当的IOL的植入,术后
波前像差尤其是全眼球差增加,对比敏感度降低,
导致患者术后夜间视力下降和产生视觉干扰症状“。
对于Kappa角大于0.50
mm且4
mm角膜直径下
总高阶像差大于0.50
ym的患者不建议植入多焦点
IOL[,210所以术前对患者进行像差检查,根据检查
结果个性化制定诊疗方案,可减少术后高阶像差,
提高术后视觉质量。角膜塑形镜是近视防控的一
种有效方法,但若光学治疗区偏中心,可能导致角
膜tHOA、总三阶像差(主要是彗差)的增大,产生
虚影、视物模糊等症状,所以在配戴过程中进行像
差检查有较大的临床意义[,3'141o圆锥角膜会导致
角膜像差尤其是ZJ增加角膜像差检查有助于
圆锥角膜诊断、严重程度分级和视力预测何。干眼
•
22・中华眼视光学与视觉科学杂志.2021.
23
(
1
)
Chin
J
Optom
Ophthalmol
Vis
Sci,
2021,
23(1)表1.
er和iTrace测量角膜高阶像差值(pm)及一致性Table
1・
Differences
and
agreement of
corneal
higher
order
aberration
measurement
(pm)
between
er
and
er0.020±0.013iTrace0.019±0.010Difference0.001±0.01095%LoAtP/
P2-0.019-0.021-0.003-0.005-0.007-0.0091.5761.7490.8201.730340.050±0.0220.120±0.0480.049±0.0210.001
±0.0020.001
±0.0040.003±0.0090.001±0.0180.1180.1460.4150.6190.994<0.001<0.001<0.001<0.001<0.0010」20±0.0490.217±0.0610.389±0.1070.9970.98956$P乙°0.220±0.0590.390±0.1000.9600.009-0.015-0.021-0.034-0.0360.1600.6880.4030.9850.9600.0100.003±0.0020.015±0.00720.004±0.0020.016±0.0070.049±0.0160.001±0.0010.001
±0.0020.001
±0.00730.001-0.003-0.005-0.007-0.013-0.015-0.012-0.0140.8200.1350.7950.951<0.001<0.001<0.0010.4030.6260.6800.533456rbPZ330.048±0.0160.9120.9820.8810.116±0.0310.270±0.0400.114±0.0310.266±0.0370.9160.0290.002±0.0060.004±0.0191.9081.908-0.033-0.0410.0590.059<0.001<3±0.039±0.0330.072±0.033340.002±0.0030.011±0.0100.038±0.0330.072±0.0340.001±0.0010.000±0.0010.001
±0.007-0.001-0.003-0.002-0.002-0.013-0.015-0.004-0.004-0.027-0.0231.8810.7650.6790.0630.8910.4460.9950.9790.9990.986<0.001<0.001<0.00156/PZ330.000±0.0020.002±0.0131.9560.4990.0530.071<0.001<0.0010.106±0.0890.104±3±30.010±0.0080.9830.0030.003±0.0030.010±0.004230.000±0.0010.000±0.001-0.002-0.002-0.002-0.002-0.007-0.009-0.004-0.004-0.046-0.0481.0700.2870.3090.5240.159450.036±0.0310.052±0.0360.082±0.0700.9840.003O.O35±O.O310.052±0.0360.081
±0.0620.001±0.0040.000±0.0021.0230.6391.4200.9350.9410.9650.9980.979<0.001<0.001<0.001<0.001<0.0016rbPZ;10.001
±0.0240.2070.8360.9700.00623456rbPz3'0.006±0.0060.021±0.0200.052±0.0420.081±0.0590.006±0.0060.021±0.0200.000±0.0020.000±0.004-0.004-0.004-0.008-0.008-0.021-0.023-0.004-0.004-0.048-0.0500.4560.5050.0371.5920.6490.6150.9730.9350.981<0.001<0.0010.051±0.0420.081±0.0590.001±0.0110.000±0.0020.1150.9761.0000.988<0.001<0.001<0.0010.135±0.1200.9780.0040.003±0.0030.134±0.1150.9790.0040.001
±3±30.011
±0.0060.000±0.002-0.004-0.0040.0430.4000.012±0.0060.038±0.0010.070±0.0440.119±0.0840.001
±0.0020.001
±0.0060.037±0.0020.070±0.043-0.003-0.005-0.011-0.013-0.002-0.0020.9660.6340.5420.7230.7850.9480.9900.9750.927<0.001<0.001<0.0010.000±0.0010.001±0.0130.1770.3740.564<0.001<0.0016/P0.9700.0060.118±0.0830.9690.007-0.024-0.0260.274”=96 eyes.
Data
are
expressed
as
means±standard
deviation.
PD,
pupil
diameter;
tHOA,
total
higher-order
aberration;
Z4°,
spherical
aberration;
Z3
vertical
trefoil;
Z3?,
horizontal
trefoil;
Z/1,
vertical
coma;
Z,1.
horizontal
coma; 95%LoA, 95%
limits
of
agreement.
ra,
correlation
coefficient
between
er
and
iTrace
measurement;
rb,
correlation
coefficient
between
corneal
higher
order
aberration
and
pupil
diameter.患者的角膜总高阶像差尤其是彗差和三叶草像差
显著增加切,视觉质量下降,角膜像差测量有助于
查和疗效评估除了视力外,也可结合波前像差综合
分析阴。所以,像差仪在临床上有广泛的用途。干眼的诊断和疗效评估。另外,研究发现弱视的治
疗效果与全眼和眼内球差有关,对于弱视儿童的检
采用Ray
tracing原理的iTrace是目前临床常
用的像差仪,其测量的重复性已被证实(切。采用
屮华眼视光学与视觉科学杂志,2021
.
23
(
1
)
Chin
J
Optom Ophthalmol
Vis
Sci,
2021,
23(1)・23・表2.
er和iTrace测量全眼高阶像差差值及(pm
)的一致性Table
2.
Differences
agreement
of
ocular higher
order
aberrations
(pm)
measure
ments
between
er
and
eriTraceDifference-0.001±0.00295%LoAtPrP35zj0.050±0.0160.240±0.0900.010±0.0080.051±0.0160.243±0.0790.011
±0.007-0.003±5~3-0.025~0.019-0.004~0.004-0.013~0.011-0.005~0.003-0.004~0.004-0.002~0.002-2.694-2.2320.0870.0820.8010.9920.9730.9830.985<0.001<0.001<0.00135z3335zf35z「35235-0.000±0.002-0.252-1.0530.073±0.0520.017±0.0130.062±0.0370.022±0.0130.074±0.050-0.001
±0.006-0.001±0.0020.2950.871<0.001<0.001<0.001<0.0010.018±0.0120.063±0.036-0.1620.8850.3440.9890.9810.000±0.0020.000±0.0010.3790.7310.1420.1750.021±0.0110.9570.9590.9950.9970.101±0.0540.102±0.0350.014±0.0130.070±0.0340.014±0.0110.055±0.035-0.000±0.002-0.001±0.002-0.001±0.002-0.004~0.004-0.005~0.003—0.005〜0.003-0.005〜0.005-1.481-1.367-1.758-1.027-0.180<0.001<0.001<0.0010.013±0.0110.068±0.0350.0820.3070.8580.013±0.1000.054±0.034-0.000±0.003-0.001±0.0100.571-0.021~0.0190.943<0.001<0.001"=96
eyes.
Data
are
expressed
as
means±standard deviation.
PD,
pupil diameter;
tHOA,
total
higher-order
aberration; SA
(Z4°),
spherical
aberration;
Z3
3,
vertical
trefoil;
Z3
horizontal
trefoil;
Z/1,
vertical
coma;
Z3',
horizontal
coma; 95%LoA.
95%
limits
of
agreement.图1.
3
mm瞳孔直径下2种设备测■全眼波前像差参数的Bland-Altman图(96眼)中间实线表示差值平均值,上下虚线表示95%LoAA:
tHOA;
B:Z4°;C:Z33;
D:
Z/;
E:
Z3
';F:
Z3*Figure
1.
Bland-Altman
plot
of
parameters
measured
by
the
two
devices
under
3
mm
pupil diameter
(96
eyes).The
solid
line
indicates
the
mean
difference
in
measurements
by
the
two
devices;
the
dotted
lines
indicate
the
95%
limits
of
agreement
in
measurements
by
the
two devices.A:
Total
higher-order
aberration.
B:
Spherical
aberration.
C:
Vertical
trefoil.
D:
Horizontal
trefoil. E:
Vertical
coma.
F:
Horizontal
nn-Shack原理的er在国外主要被视光
师采用,目前尚未见在国人应用方面的临床研究,
有必要评价其测量国人波前像差的准确性。本研
角膜球差的变化幅度最大。Xu等0】对比TiTrace和
采用Hartmann-Shack原理的KR-1W波前像差仪(日
本Topcan公司)的测量结果,发现差异无统计学意
究发现er和iTrace测量角膜和全眼高阶像差
结果差异均无统计学意义,并且具有良好的一致性
义,二者之间一致性良好。Rodriguez等切通过比
较H
artmann-Shack原理的Zywave波前像差仪(美国
和相关性。高阶像差均随瞳孔直径的增加而增大。
Applegate等⑷研究也显示在3
~
7
mm瞳孔直径下
Bausch
klllb公司)和iTrace测量角膜高阶像差,发
现二者一致性较好。本研究中5
mm瞳孔直径下,er和角膜的高阶像差随瞳孔直径的增大而增高,其中
・24・中华眼视光学与视觉科学杂志,2021,
23
(1)
Chin
J
Optom
Ophthalmol
Vis
Sci, 2021,23(1)图2
5
mm瞳孔直径下两台设备测量全眼波前像差参数的Bland-Altman®
(
96眼)中间实线表示差值平均值,上下虚线表示95%LoAA:
tHOA; B:
Z4°;
C:Z33;
D:
Z33;
EjZ/jF:
Z3'Figure
2.
Bland-Altman
plot
of
measurements by
the
two
devices
under
5
mm
pupil
diameter
(96
eyes).The
solid
line
indicates
the
mean
difference
in
measurements
by
the
two
devices;
the
dotted
lines
indicate
the
95%
limits of
agreement
in
measurements
by
the
two
devices.A: Total
higher-order
aberration.
B:
Spherical
aberration.
C:
Vertical
trefoil.
D:
Horizontal
trefoil.
E:
Vertical
coma.
F:
Horizontal
测量全眼Z,分别为(0.073
±
0.052
)
gm
康青年人中,眼内Z「对角膜像差具有补偿作用。
Gatinel等閒通过比较角膜前表面和全眼像差发
和(0.074
±
0.050
)
nmo
Visser等测比较iTrace和
Hartmann-Shack原理的Irx3波前像差仪(法国Orsay
现,角膜像差与晶状体像差之间存在着补偿机制。
Kelly等旳用像差仪分析30例年轻人的角膜和全眼
公司),证实了二者之间一致性较好。而且,在5
mm
瞳孔直径下,全眼球差分别为(0.064
±
0.076)
urn
高阶像差,同样发现眼内Z*和ZJ都对角膜像差具
有补偿作用,其中球差的补偿作用比较恒定,而彗
和(0.063
±
0.068
)|im,与本研究结果相似。Yi等国
使用Hartmann-Shack原理的HASO32波前像差仪
(法国Orsay公司)研究认为景深随瞳孔直径的增大
差的个体差异较大,瞳孔直径和年龄等因素会影响
这种补偿或迭加作用,与本研究结果一致。Oshika
等曲同样认为随着年龄的增长,由于角膜变性或者
而减少,同时与角膜球差呈负相关性,其中5
mm
瞳孔直径下,全眼球差为(0.075
±
0.062
)
pm,与本
内皮细胞功能的下降使角膜平整性发生改变,引起
角膜彗差的增加。同时随着年龄的增长,泪液分泌
减少,也会增加角膜像差,而对于不同年龄角膜球
差相对较稳定。所以角膜和全眼高阶像差的准确
研究的全眼球差结果相近。本研究中3 mm和5
mm瞳孔直径下,全眼ZJ
分别为(0.010
土
0.008
)
gm、(
0.073
±
0.052
)
pm,
角膜
Z/分别为(0.016
±
0.007
)
nm
J0.1
16
±
0.031同_瞳孔直径下,全眼球差小于角膜球差。
本研究中均是健康青年人,说明在健康青年人中,
测量和分析对矫正人眼波前像差,指导个性化1OL
选择,引导角膜屈光手术和评估术后视觉效果都有
重要的临床意义。眼内的球差为负,对角膜正球差具有明显补偿作
用,全眼球差极小,所以视觉质量高。我们之前通
过对比植入非球面和球面IOL的白内障患者术后视
觉质量发现.非球面IOL植入后,1OL负球差可以
像差仪测量的次数、测量的数据点以及光源
波长与测量设备的精确性密切相关旳。本研究中,
er自动从3次测量中选择最优数据作为最终
测量结果,而iTrace每次只进行1次测量,二者测
矫正角膜的正球差,术后能改善患者暗环境下视
觉质量s;
3
mm和5
mm瞳孔直径下,全眼Z3"分
量结果的差异无统计学意义。er同时检测所
有入瞳光束,而iTrace是依次追踪单个入瞳光束,
别为(0.013
±
0.100
)ym、(0.068
±
0.035
)ym,角膜
Z3」分别为(0.021
±
0.020
)
pm、(
0.081
±
0.059
)
nm,
同一瞳孔直径下,全眼Z/1小于角膜Z「,说明在健
进行整合得到的像差分析,这样避免了光斑之间重
合对像差测量的影响,在较高像差或屈光介质不透
明状态下优于er的测量,同样二者测量结果
中华眼视光学与视觉科学杂志,2021,
23
(
1
)
Chin
J
Optom
Ophthalmol
Vis
Sci,
2021,
23(1)•
25・的差异无统计学意义。本研究发现[Profiler存在以下不足:如不能提
供眼内波前像差值;角膜和全眼的彗差和三叶草像
差需根据像差计算公式另行计算;全眼像差只提
供3、5
mm瞳孔直径下的数据;不能提供Kappa角、
Alpha角数值等。本次研究也有其局限性,由于受
检者均为青年人群,屈光介质透明,所以无法明确
2种设备在不同年龄以及白内障患者或者其他影响
屈光介质透明度的疾病测量方面的差异性。在今
后研究中将扩大样本范围,对不同年龄段以及白内
障患者进行研究,明确其在屈光介质不同混浊程度
状况下测量的精确性。综上所述"Profile与iTrace测量角膜和全眼高
阶像差均具有较好一致性,在临床上二者数据可以
相互参考;角膜和全眼高阶像差均随着瞳孔直径的
增大而增加,其中球差的增加幅度最明显。利益冲突申明本研究无任何利益冲突
作者贲献声明
王梅洁:参与选题、设计,实施像差仪检测.收集
数据、统计处理.撰写论文初稿「廖萱:指导课题设计及研究实施.
修改论文尤其是英文部分。谭青青:参与选题、设计、资料的分析.
修改论文尤其是英文部分。兰长骏:课题总体设计、资料的分析,
全面修改论文参考文献:[1]
Schrecker
J,
Schroder
S,
Langenbucher
A,
et
al.
Individually
customized
IOL
versus
standard
spherical
aberrationcorrecting
IOL.
J
Refract
Surg,
2019,
35(9):
565-574.
DOI:
10.3928/1081597X-20190814-02.[2]
Marin-Franch
I,
Xu
R,
Bradley
A,
et
al.
The
effect
of
spherical
aberration
on
visual
performance
and
refractive
state
for
stimuli
and
tasks
typical
of
night
viewing.
J Optom,
2018,
11(3):
144-
152.
DOI:
10.1016/.2017」0.003.[3]
Liao
X,
Huang XQ,
Lan
CJ,
et
al.
Comprehensive
evaluation
of
retinal
image
quality
in
comparing
different
aspheric
to
spherical
intraocular
lens
implants.
Curr
Eye
Res,
2019,
44(10):
1098-
1103.
DOI:
10.1080/02713683.2019.1615512.[4]
Hartwig
A,
Atchison
DA,
Radhakrishnan
H.
Higher-order
aberrations
and
anisometropia.
Curr
Eye
Res,
2013,
38(1):
215-
219.
DOI:
10.3109/02713683.2012.738462.[5]
Putnam
NM,
Vasudevan
B,
Juarez
A,
et
al.
Comparing
habitual
and
ion
refractions.
BMC
Ophthalmol,
2019,
19(1):
49.
DOI:
10.1186/s 12886-019-1053-x.[6]
Lebow
KA,
Campbell
CE.
A
comparison of
a
traditional
and
wavefront
autorefraction.
Optom
Vis
Sci,
2014,
91(10):
1191-
119&
DOI:
10.1097/OPX.0378.[7]
Rauscher
FG,
Lange
H,
Yahiaoui-Doktor
M,
et
al.
Agreement
and
repeatability
of
noncycloplegic
and cycloplegic
wavefrontbased
autorefraction
in
children.
Optom
Vis
Sci,
2019,
96(11):
879-889.
DOI:
10.1097/OPX.1444.[8]
Bland
JM,
Altman
DG.
Statistical
methods
for
assessing
agreement
between
two
methods
of
clinical
measurement.
Lancet,
1986,
327(8476):
307-310.[9]
Duran
JA,
Gutierrez
E,
Atienza
R,
et
al.
Vector
analysis
of astigmatic
changes
and
optical
quality
outcomes
after
wavefront-guided
laser
in
situ
keratomileusis
using
a
high-
resolution
aberrometer.
J
Cataract
Refract
Surg,
2017,
43(12):
1515-1522.
DOI:
10」016/.2017.0&020.[10]
Jung
HH,
Ji
YS,
Oh
HJ,
et
al.
Higher
order
aberrations
of
the
corneal
surface
after
laser
subepithelial
keratomileusis.
Korean
J
Ophthalmol,
2014.
28(4):
285-291.
DOI:
10.3341/
kjo.2014.2&4.285.[11]
Bohac
M,
Koncarevic
M,
Dukic
A,
et
al.
Unwanted
astigmatism
and
high-order
aberrations
one
year
after
excimer
and
femtosecond
corneal
surgery.
Optom
Vis
Sci,
2018,
95(
11):
1064-1076.
DOI:
10.1097/OPX.1298.[12]
中华医学会眼科学分会白内障及人工晶状体学组.中国多
焦点人工晶状体临床应用专家共识(2019年)•中华眼科杂
志,2019,
55(7):
491-494.
DOI:
10.3760/.0412-4081.
2019.07.003.[13]
陈茹茹,陈岩,廉恒丽.角膜像差与角膜前表面Q值对角膜塑
形术近视控制的影响.中华眼视光学与视觉科学杂志,2016,
18(2):
78-82.
DOI:
10.3760/.1674-845X.2016.02.004.[14]
Yin
Y,
Zhao
Y,
Wu
X,
et
al.
One-year
effect
of
wearing
orthokeratology
lenses
on
the
visual
quality of
juvenile
myopia:
a
retrospective
study.
Peer
J,
2019,
7:
6998.
DOI:
10.7717/
peeij.6998.[15]
Naderan
M,
Jahanrad
A,
Faijadnia
M.
Ocular,
corneal,
and
internal
aberrations
in
eyes
with
keratoconus,
forme
fruste
keratoconus,
and
healthy
eyes.
Int
Ophthalmol,
2018,
38(4):
1565-1573.
DOI:
10.1007/sl0792-017-0620-5.[16]
崔乐乐,李明,沈梅晓,等.Zemike多项式分析全角膜前后表
面和厚度三维不规则分布在圆锥角膜诊断中的价值.中华眼
视光学与视觉科学杂志,2017,
19(5):
285-290.
DOI:
10.3760/
.1674-845X.2017.05.006.[17]
Koh
S.
Irregular
astigmatism
and
higher-order
aberrations
in
eyes
with
dry
eye
disease.
Invest
Ophthalmol
Vis
Sci,
2018,
59(14):
36-40.
DOI:
10.1167/iovs.
17-23500.[18]
Hoshing
A,
Samant
M,
Bhosale
S,
et
al.
Comparison
of
higher
order
aberrations
in
amblyopic
and
non-amblyopic
eyes
in
pediatric
patients
with
anisometropic
amblyopia.
Indian
J
Ophthalmol,
2019,
67(7):
1025-1029.
DOI:
10.1167/
iovs.
17-23500.[19]
Hua
Y,
Xu
乙
Qiu
W,
et
al.
Precision
(repeatability
and
reproducibility)
and
agreement
of
comeal
power
measurements
obtained by
Topcon
KR-1W
and
iTrace.
PLoS One,
2016,
11(1):
eO
147086.
DOI:
10.1371
/.0147086.[20]
Applegate RA,
Donnelly
WJ,
Marsack
JD,
et
al.
Three-
dimensional
relationship
between
high-order
root-mean-square
wavefront
error,
pupil
diameter,
and
aging.
J
Opt
Soc
Am
A
Opt
Image
Sci
Vis,
2007,
24(3):
578-587.
DOI:
10.1364/
JOSAA.24.000578.[21]
Xu
Z,
Hua
Y,
Qiu
W,
et
al.
Precision
and
agreement
of
higher
order
aberrations
measured
with
ray
tracing
and
Hartmann-
Shack
aberrometers.
BMC
Ophthalmol,
2018,
18(1):
18.
DOI:
•
26
•中华眼视壯7:9
视.逅科学杂志.2021
.
23
I
1
Chin
.1
Opiom
Ophthalmol
Vis
Sci.
2()21.
23(
I
)10.1186/s
total
ocular
aberrations
before
and
after
myopic
LASIK.
J
[22]
Rodriguez
P,
Navarro
R,
Gonzalez
L,
et
al.
Accuracy
Refract
Surg,
2010,
26(5):
333-340.
DOI:
10.3928/1081597X-
20090617-01.[27]
and
reproducibility
of
Zywave,
Tracey,
and
experimental
aberrometers.
J
Refract
Surg, 2004.
20(6):
810-817.[23]
Kelly JE,
Mihashi
T.
Howland
HC.
Compensation
of
corneal
horizontal/vertical
astigmatism,
lateral
coma
and
spherical
aberration
by
internal optics
of
the
eye.
J
Vis,
2004,
4(4):
262-
Visser
N,
Berendschot
TT,
Verbakel
F,
et
al.
Evaluation of
the
comparability
and
repeatability
of
four
wavefront
aberrometers.
Invest
Ophthalmol
Vis
Sci,
2011,
52(3):
1302-1311.
DOI:
10.1167/iovs.l0-5841.[24]
Yi
F,
Iskander
DR,
Collins
MJ.
Estimation
of
the
depth
of
focus
271.
DOI:
10.1167/4.4.2.[28]
Oshika T,
Klyce
SD,
Applegate
RA,
et al.
Changes
in
corneal
wavefront
aberrations
with
aging.
Invest
Ophthalmol
Vis
Sci,
1999,
40(7):
wavefront
measurements.
J
Vis,
2010,
10(4):
3-9.
DOI:
10.116刀10.4.3.[29]
Moreno-Barriuso
E,
Navarro
R.
Laser
ray
tracing
versus
Hartmann-Shack
sensor
for measuring
optical
aberrations
in the [25]
Tan
QQ,
Lin
J,
Tian
J,
et
al.
Objective
optical
quality
in
eyes
with
customized
selection
of
aspheric
intraocular
lens
implantation.
BMC
Ophthalmol,
2019,
19(1):
152.
DOI:
10.1186/s
eye.
J
Opt
Soc
Am
A
Opt
Image
Sci
Vis,
2000,
17(6):
974-985.
DOI:
10.1364/josaa.
17.000974.(收稿日期:2020-05-25)[26]
Gatinel
D,
Adam
PA,
Chaabouni
S,
et
al.
Comparison
of
corneal
(本文编辑:吴昔昔)•读者•作者•编者•致谢2020年本刊审稿专家你们的名字隐没在论文背后,你们的专业却闪耀在字里行间,你们令杂志生辉!感谢有你.一路相伴!
2020年度中华
眼视光学与视觉科学杂志审稿专家名单(按姓氏汉语拼音为序,排名不分先后)如下:白继陈跃国付晶毕宏生毕燕龙崔彦常枫戴虹郭海科陈莉邓如芝陈蔚邓应平韩泉洪陈长征范先群陈世豪陈有信封利霞褚仁远万爱武何伟高前应胡臻高莹莹郭长梅黄锦海何寒青胡建民姜培李莹毛欣杰胡亮黄国富黄国胜黄智慧李丽华刘祖国惠延年李晓清贾亚丁接英梁皓卿国平金子兵廖荣丰亢晓丽刘虎蓝卫忠刘陇黔任彦新李建军李筱荣马景学沈晔陶勇刘泉吕帆沈丽君瞿佳瞿小妹宋鄂王雨生邵立功宋宗明申屠形超孙晓东魏世辉徐格致盛迅伦施红英史伟云汪辉宋雪梅韦企平邢怡桥唐罗生魏文斌徐国兴叶剑万修华汪朝阳吴峥峥魏瑞华徐峰吴开力吴文灿许迅夏晓波夏晓倩杨培增余新平张惠成徐雯叶娟颜建华晏晓明余敏斌张富文赵培泉朱思泉杨新军俞阿勇张劲松杨亚波袁援生张铭志郑景伟邹海东杨智宽易湘龙阴正勤原慧萍张绍丹钟华张风张红赵晨张伟赵东卿张丰菊赵明威张宗端周清赵云娥朱颖婷郑策卓业鸿周激波周铁丽朱豫
发布者:admin,转转请注明出处:http://www.yc00.com/num/1707402555a1503578.html
评论列表(0条)