基于微波光子学的频率测量技术研究

基于微波光子学的频率测量技术研究


2024年4月10日发(作者:)

摘要

摘要

瞬时频率测量技术在现代化电子战中是一项十分关键的技术。通过快速的频率测

量可以准确的获知敌方的电磁信息,进而实现侦查、防御、攻击等目的。随着信号速

率的增加,传统的电子测频技术逐渐不能适应瞬息多变的测量环境。

微波光子技术结合了微波和光子的各自优势,具有抗电磁干扰、带宽大、损耗小、

系统结构相对简单等特点,发展潜力很大。基于微波光子学的频率测量技术克服传统

测频技术中的诸多瓶颈,具有低损耗、宽带宽、电磁干扰免疫、小型便携等优点,成

为当前研究的热点之一。

本论文主要研究了频率-微波功率映射技术与多频率测量技术。

针对频率-微波功率映射技术,提出了两种方案。对于方案一,光信号通过偏振

调制器(PolM)完成与微波信号的调制,再利用偏振控制器引入固定的相移,通过

光纤对下路光信号引入色散后,得到ACF函数。利用matlab,验证了ACF曲线与光

纤长度、光载波波长的关系。通过VPI仿真,当使用低损耗光纤时,在29GHz到36GHz

的测量范围内,测频误差为

0.4

GHz;当采用损耗补偿时,在22GHz到36GHz的测

量范围内,测频误差为

0.25

GHz。对于方案二,将偏振态相互正交的两束光信号在

Sagnac环中沿不同方向传播,受微波与光子速率匹配影响,使得一束光信号完成相

位调制,另一束光信号不受任何调制,两路光信号经过同一段光纤引入色散后,得到

ACF函数。利用matlab,验证了ACF曲线不仅与光纤长度、光载波波长有关,还与

起偏器之前的偏振控制器角度相关,这提高了系统的灵活性和可重构性。通过VPI

仿真,在21GHz到39GHz的测量范围内,误差控制在

0.2

GHz。

针对多频率测量技术,我们采用光梳作为多频率测量方案中的多载波光源,这样

可以降低系统对激光器的数量要求,提高光源的稳定性。首先提出了一种基于双偏振

马赫-增德尔调制器的光学频率梳生成方案,通过合理设置射频电压及直流偏置可以

得到9线平坦光梳。VPI仿真验证了方案的可行性。将产生的光梳在马赫-增德尔调

制器(MZM)内与待测信号发生调制,通过法布里-珀罗(F-P)标准具和波分复用器

(WDM)后,利用测量波分复用器每个输出端口的功率,完成多频率的测量。通过

VPI,证明了理论推导与仿真的一致性,并对影响测量精度及范围的主要因素分别进

行分析,验证了整个系统具有良好的灵活性和一定的实用价值。

关键词:微波光子学,电光调制器,频率-微波功率映射,多频率测量技术

I

ABSTRACT

ABSTRACT

Instantaneous frequency measurement technology is a very critical technology in the

modern electronic warfare. Through the rapid frequency measurement, the enemy's

electromagnetic information can be captured accurately, and then we can achieve the

investigation, defense, attack and other purposes. As the signal rate increases, the

traditional electronic frequency measurement technology is gradually unable to adapt to

the complicated measurement.

Microwave photonics combines the advantages of microwave and photon, with

anti-electromagnetic interference, large bandwidth, small loss, relatively simple system

structure and so on. It has great potential for development. The frequency measurement

technique based on microwave photonics can overcome many bottlenecks in the traditional

frequency measurement technology, with low loss, wide bandwidth, anti-electromagnetic

interference, small size, etc. It has become one of the popular direction of current research.

This paper mainly discusses frequency-microwave power mapping technology and

multi-frequency measurement technology. Two schemes are proposed for frequency-

microwave power mapping. For scheme one, the optical signal is modulated by the

microwave signal through the polarization modulator (PolM), and then we use the

polarization controller to introduce a fixed phase shift. After introducing the dispersion to

the downstream optical signal by optical fiber, we can obtain an ACF function. Through

matlab, the relationship among the ACF curve, optical fiber length and optical carrier

wavelength is verified. Through VPI simulation, when using low loss fiber and the

measurement range from 29GHz to 36GHz, the frequency measurement error is

0.4

GHz.

When using loss compensation and the measurement range from 22GHz to 36GHz, the

frequency measurement error is

0.25

GHz. For scheme two, two optical signals, which are

orthogonal to each other, propagate in different directions in the Sagnac ring. Affected by

rate matching for microwave and photon, one optical signal completes phase modulation,

another optical signal is not modulated. After introducing the dispersion to the both optical

signals by the same optical fiber, we can obtain an ACF function Through matlab, it is

verified that the ACF curve is not only related to the fiber length and optical carrier

wavelength, but also to the angle of the polarization controller, which can improve the

III


发布者:admin,转转请注明出处:http://www.yc00.com/news/1712751927a2116225.html

相关推荐

发表回复

评论列表(0条)

  • 暂无评论

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信