2024年1月8日发(作者:)
matlab里solve如何使用,是否有别的函数可以代替它.
matlab里我解y=9/17*exp(-1/2*t)*17^(1/2)*sin(1/2*17^(1/2)*t)=0这样的方程为什么只得到0这一个解,如何可以的到1/2*17^(1/2)*t=n*(pi)这样一族解??
在matlab里面solve命令主要是用来求解代数方程(即多项式)的解,但是也不是说其它方程一个也不能解,不过求解非代数方程的能力相当有限,通常只能给出很特殊的实数解。(该问题给出的方程就是典型的超越方程,非代数方程)
从计算机的编程实现角度讲,如今的任何算法都无法准确的给出任意非代数方程的所有解,但是我们有很多成熟的算法来实现求解在某点附近的解。matlab也不例外,它也只能给出任意非代数方程在某点附近的解,函数有两个:fzero和fsolve,具体用法请用help或doc命令查询吧。如果还是不行,你还可以将问题转化为非线性最优化问题,求解非线性最优化问题的最优解,可以用的命令有:
fminbnd, fminsearch, fmincon等等。
*非线性方程数值求解
*单变量非线性方程求解
在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。该函数的调用格式为:
z=fzero('fname',x0,tol,trace)
其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace•指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。
例求f(x)=x-10x+2=0在x0=0.5附近的根。
步骤如下:
(1) 建立函数文件funx.m。
function fx=funx(x)
fx=x-10.^x+2;
(2) 调用fzero函数求根。
z=fzero('funx',0.5)
z =
0.3758
**非线性方程组的求解
对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:
X=fsolve('fun',X0,option)
其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0
是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果。optimset(‘Display’,‘off’)将设定Display选项为‘off’。
例 求下列非线性方程组在(0.5,0.5) 附近的数值解。
(1) 建立函数文件myfun.m。
function q=myfun(p)
x=p(1);
y=p(2);
q(1)=x-0.6*sin(x)-0.3*cos(y);
q(2)=y-0.6*cos(x)+0.3*sin(y);
(2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。
x=fsolve('myfun',[0.5,0.5]',optimset('Display','off'))
x =
0.6354
0.3734
将求得的解代回原方程,可以检验结果是否正确,命令如下:
q=myfun(x)
q =
1.0e-009 *
0.2375 0.2957
可见得到了较高精度的结果。
在回归分析中,测定值与按回归方程预测的值之差,以δ表示。残差δ遵从正态分布N(0,σ2)。(δ-残差的均值)/残差的标准差,称为标准化残差,以δ*表示。δ*遵从标准正态分布N(0,1)。实验点的标准化残差落在(-2,2)区间以外的概率≤0.05。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归线拟合。
所谓残差是指实际观察值与回归估计值的差。
显然,有多少对数据,就有多少个残差。残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰 。
可决系数(coefficient of determination)
如果样本回归线对样本观测值拟合程度越好,各样本观测点与回归线靠得越近,由样本回归做出解释的离差平方和与总离差平方和越相近;反之,拟合程度越差,相差越大。
可决系数的计算式: R^2=Σ(^Yi-Y)^2/Σ(Yi-Y)^2=Σ^yi^2/Σy^2
可决系数可以作为综合度量回归模型对样本观测值拟合优度的度量指标。
可决系数是测定多个变量间相关关系密切程度的统计分析指标,它也是反映多个自变量对因变量的影响程度。可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。可决系数的取值范围在0到1之间,它是一个非负统计量。随着抽样的不同而不同,既是随样本而变动的统计量。
发布者:admin,转转请注明出处:http://www.yc00.com/news/1704707898a1364411.html
评论列表(0条)